These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19815667)

  • 1. Profiling of mismatch discrimination in RNAi enabled rational design of allele-specific siRNAs.
    Huang H; Qiao R; Zhao D; Zhang T; Li Y; Yi F; Lai F; Hong J; Ding X; Yang Z; Zhang L; Du Q; Liang Z
    Nucleic Acids Res; 2009 Dec; 37(22):7560-9. PubMed ID: 19815667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.
    Ohnishi Y; Tamura Y; Yoshida M; Tokunaga K; Hohjoh H
    PLoS One; 2008 May; 3(5):e2248. PubMed ID: 18493311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing siRNA that distinguish between genes that differ by a single nucleotide.
    Schwarz DS; Ding H; Kennington L; Moore JT; Schelter J; Burchard J; Linsley PS; Aronin N; Xu Z; Zamore PD
    PLoS Genet; 2006 Sep; 2(9):e140. PubMed ID: 16965178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-mismatched siRNAs enhance selective gene silencing of a mutant ALS-causing allele.
    Geng CM; Ding HL
    Acta Pharmacol Sin; 2008 Feb; 29(2):211-6. PubMed ID: 18215350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites.
    Du Q; Thonberg H; Wang J; Wahlestedt C; Liang Z
    Nucleic Acids Res; 2005; 33(5):1671-7. PubMed ID: 15781493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing of highly effective complementary and mismatch siRNAs for silencing a gene.
    Ahmed F; Raghava GP
    PLoS One; 2011; 6(8):e23443. PubMed ID: 21853133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme.
    Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M
    Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of siRNA specificity on targets with double-nucleotide mismatches.
    Dahlgren C; Zhang HY; Du Q; Grahn M; Norstedt G; Wahlestedt C; Liang Z
    Nucleic Acids Res; 2008 May; 36(9):e53. PubMed ID: 18420656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the RNA Interference Activity Using Central Mismatched siRNAs and Acyclic Threoninol Nucleic Acids (aTNA) Units.
    Alagia A; Terrazas M; Eritja R
    Molecules; 2015 Apr; 20(5):7602-19. PubMed ID: 25919280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of functional small interfering RNAs targeting amyotrophic lateral sclerosis-associated mutant alleles.
    Geng CM; Ding HL
    Chin Med J (Engl); 2011 Jan; 124(1):106-10. PubMed ID: 21362317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.
    Takahashi M; Hohjoh H
    Mol Biol Rep; 2014 Nov; 41(11):7115-20. PubMed ID: 25037272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in silencing of mismatched targets by sliced versus diced siRNAs.
    Sun G; Wang J; Huang Y; Yuan CW; Zhang K; Hu S; Chen L; Lin RJ; Yen Y; Riggs AD
    Nucleic Acids Res; 2018 Jul; 46(13):6806-6822. PubMed ID: 29718312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved siRNA/shRNA functionality by mismatched duplex.
    Wu H; Ma H; Ye C; Ramirez D; Chen S; Montoya J; Shankar P; Wang XA; Manjunath N
    PLoS One; 2011; 6(12):e28580. PubMed ID: 22174840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs.
    Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect.
    Naito Y; Yoshimura J; Morishita S; Ui-Tei K
    BMC Bioinformatics; 2009 Nov; 10():392. PubMed ID: 19948054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acyclic (
    Egli M; Schlegel MK; Manoharan M
    RNA; 2023 Apr; 29(4):402-414. PubMed ID: 36725319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASPsiRNA: A Resource of ASP-siRNAs Having Therapeutic Potential for Human Genetic Disorders and Algorithm for Prediction of Their Inhibitory Efficacy.
    Monga I; Qureshi A; Thakur N; Gupta AK; Kumar M
    G3 (Bethesda); 2017 Sep; 7(9):2931-2943. PubMed ID: 28696921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference with 2',4'-bridged nucleic acid analogues.
    Abdur Rahman SM; Sato H; Tsuda N; Haitani S; Narukawa K; Imanishi T; Obika S
    Bioorg Med Chem; 2010 May; 18(10):3474-80. PubMed ID: 20427190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of siRNA terminal mismatches on TRBP and Dicer binding and silencing efficacy.
    Kini HK; Walton SP
    FEBS J; 2009 Nov; 276(22):6576-85. PubMed ID: 19811537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of hyperfunctional siRNAs with improved potency and specificity.
    Wang X; Wang X; Varma RK; Beauchamp L; Magdaleno S; Sendera TJ
    Nucleic Acids Res; 2009 Dec; 37(22):e152. PubMed ID: 19846596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.