These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 19815782)

  • 1. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis.
    Matzke D; Wagenmakers EJ
    Psychon Bull Rev; 2009 Oct; 16(5):798-817. PubMed ID: 19815782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are model parameters linked to processing stages? An empirical investigation for the ex-Gaussian, ex-Wald, and EZ diffusion models.
    Rieger T; Miller J
    Psychol Res; 2020 Sep; 84(6):1683-1699. PubMed ID: 30949790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting wald and ex-Wald distributions to response time data: an example using functions for the S-PLUS package.
    Heathcote A
    Behav Res Methods Instrum Comput; 2004 Nov; 36(4):678-94. PubMed ID: 15641415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A diffusion model decomposition of the practice effect.
    Dutilh G; Vandekerckhove J; Tuerlinckx F; Wagenmakers EJ
    Psychon Bull Rev; 2009 Dec; 16(6):1026-36. PubMed ID: 19966251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the Vincentizing method of forming group-level response time distributions.
    Rouder JN; Speckman PL
    Psychon Bull Rev; 2004 Jun; 11(3):419-27. PubMed ID: 15376789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Gaussian Distributional Analyses of Reaction Times (RT): Improvements that Increase Efficacy of RT Tasks for Describing Cognitive Processes.
    Osmon DC; Kazakov D; Santos O; Kassel MT
    Neuropsychol Rev; 2018 Sep; 28(3):359-376. PubMed ID: 30178182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QMPE: estimating Lognormal, Wald, and Weibull RT distributions with a parameter-dependent lower bound.
    Heathcote A; Brown S; Cousineau D
    Behav Res Methods Instrum Comput; 2004 May; 36(2):277-90. PubMed ID: 15354694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extension of the shifted Wald model of human response times: Capturing the time dynamic properties of human cognition : Trial-varying Wald model.
    Howard ZL; Fox EL; Evans NJ; Loft S; Houpt J
    Psychon Bull Rev; 2024 Jun; 31(3):1057-1077. PubMed ID: 38049574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting distributions using maximum likelihood: methods and packages.
    Cousineau D; Brown S; Heathcote A
    Behav Res Methods Instrum Comput; 2004 Nov; 36(4):742-56. PubMed ID: 15641420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling across-trial variability in the Wald drift rate parameter.
    Steingroever H; Wabersich D; Wagenmakers EJ
    Behav Res Methods; 2021 Jun; 53(3):1060-1076. PubMed ID: 32948979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Relation Between the (Censored) Shifted Wald and the Wiener Distribution as Measurement Models for Choice Response Times.
    Miller R; Scherbaum S; Heck DW; Goschke T; Enge S
    Appl Psychol Meas; 2018 Mar; 42(2):116-135. PubMed ID: 29881116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study.
    White CN; Servant M; Logan GD
    Psychon Bull Rev; 2018 Feb; 25(1):286-301. PubMed ID: 28357629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time.
    Jones M; Dzhafarov EN
    Psychol Rev; 2014 Jan; 121(1):1-32. PubMed ID: 24079307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of noise-induced variance on parameter recovery from reaction times.
    Vadillo MA; Garaizar P
    BMC Bioinformatics; 2016 Mar; 17():147. PubMed ID: 27029377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The location-based Simon effect: Reliability of ex-Gaussian analysis.
    Luo C; Proctor RW
    Mem Cognit; 2020 Jan; 48(1):42-50. PubMed ID: 31267437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating task inhibition in children versus adults: A diffusion model analysis.
    Schuch S; Konrad K
    J Exp Child Psychol; 2017 Apr; 156():143-167. PubMed ID: 28068551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual differences in components of reaction time distributions and their relations to working memory and intelligence.
    Schmiedek F; Oberauer K; Wilhelm O; Süss HM; Wittmann WW
    J Exp Psychol Gen; 2007 Aug; 136(3):414-29. PubMed ID: 17696691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donders revisited: Discrete or continuous temporal processing underlying reaction time distributions?
    Bao Y; Yang T; Lin X; Pöppel E
    Psych J; 2016 Sep; 5(3):177-9. PubMed ID: 27678483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods.
    Arnold NR; Bröder A; Bayen UJ
    Psychol Res; 2015 Sep; 79(5):882-98. PubMed ID: 25281426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring.
    Dolan CV; van der Maas HL; Molenaar PC
    Behav Res Methods Instrum Comput; 2002 Aug; 34(3):304-23. PubMed ID: 12395546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.