These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

670 related articles for article (PubMed ID: 19816290)

  • 1. Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering.
    Yoshimi R; Yamada Y; Ito K; Nakamura S; Abe A; Nagasaka T; Okabe K; Kohgo T; Baba S; Ueda M
    J Craniofac Surg; 2009 Sep; 20(5):1523-30. PubMed ID: 19816290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-engineered injectable bone regeneration for osseointegrated dental implants.
    Yamada Y; Ueda M; Naiki T; Nagasaka T
    Clin Oral Implants Res; 2004 Oct; 15(5):589-97. PubMed ID: 15355402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma.
    Ito K; Yamada Y; Naiki T; Ueda M
    Clin Oral Implants Res; 2006 Oct; 17(5):579-86. PubMed ID: 16958700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration with self-assembling peptide nanofiber scaffolds in tissue engineering for osseointegration of dental implants.
    Kohgo T; Yamada Y; Ito K; Yajima A; Yoshimi R; Okabe K; Baba S; Ueda M
    Int J Periodontics Restorative Dent; 2011; 31(4):e9-16. PubMed ID: 21837298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow.
    Yamada Y; Ito K; Nakamura S; Ueda M; Nagasaka T
    Cell Transplant; 2011; 20(7):1003-13. PubMed ID: 21054950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic potential of injectable tissue-engineered bone: a comparison among autogenous bone, bone substitute (Bio-oss), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findings.
    Ito K; Yamada Y; Nagasaka T; Baba S; Ueda M
    J Biomed Mater Res A; 2005 Apr; 73(1):63-72. PubMed ID: 15714500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: a pilot study.
    Rai B; Ho KH; Lei Y; Si-Hoe KM; Jeremy Teo CM; Yacob KB; Chen F; Ng FC; Teoh SH
    J Oral Maxillofac Surg; 2007 Nov; 65(11):2195-205. PubMed ID: 17954314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs.
    Pieri F; Lucarelli E; Corinaldesi G; Fini M; Aldini NN; Giardino R; Donati D; Marchetti C
    J Oral Maxillofac Surg; 2009 Feb; 67(2):265-72. PubMed ID: 19138598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology.
    Yamada Y; Nakamura S; Ito K; Sugito T; Yoshimi R; Nagasaka T; Ueda M
    Tissue Eng Part A; 2010 Jun; 16(6):1891-900. PubMed ID: 20067397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants.
    Ito K; Yamada Y; Nakamura S; Ueda M
    Int J Oral Maxillofac Implants; 2011; 26(5):947-54. PubMed ID: 22010075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of platelet-rich plasma on healing in critical-size long-bone defects.
    Kasten P; Vogel J; Geiger F; Niemeyer P; Luginbühl R; Szalay K
    Biomaterials; 2008 Oct; 29(29):3983-92. PubMed ID: 18614227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration.
    Yamada Y; Ueda M; Naiki T; Takahashi M; Hata K; Nagasaka T
    Tissue Eng; 2004; 10(5-6):955-64. PubMed ID: 15265313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platelet-rich plasma may not provide any additional effect when associated with guided bone regeneration around dental implants in dogs.
    de Vasconcelos Gurgel BC; Gonçalves PF; Pimentel SP; Ambrosano GM; Nociti Júnior FH; Sallum EA; Casati MZ
    Clin Oral Implants Res; 2007 Oct; 18(5):649-54. PubMed ID: 17877464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds.
    Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF
    J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on collagen membrane combinating with autogenous bone marrow stromal cells or platelet rich plasma in repairing alveolar bone defect in dogs].
    Chen J; Yang J; Huang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 May; 21(5):523-7. PubMed ID: 17578295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable soft-tissue augmentation by tissue engineering and regenerative medicine with human mesenchymal stromal cells, platelet-rich plasma and hyaluronic acid scaffolds.
    Okabe K; Yamada Y; Ito K; Kohgo T; Yoshimi R; Ueda M
    Cytotherapy; 2009; 11(3):307-16. PubMed ID: 19333802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs.
    Pieri F; Lucarelli E; Corinaldesi G; Iezzi G; Piattelli A; Giardino R; Bassi M; Donati D; Marchetti C
    J Clin Periodontol; 2008 Jun; 35(6):539-46. PubMed ID: 18422697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sinus floor elevation applied tissue-engineered bone. Comparative study between mesenchymal stem cells/platelet-rich plasma (PRP) and autogenous bone with PRP complexes in rabbits.
    Ohya M; Yamada Y; Ozawa R; Ito K; Takahashi M; Ueda M
    Clin Oral Implants Res; 2005 Oct; 16(5):622-9. PubMed ID: 16164471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study.
    Yamada Y; Ueda M; Hibi H; Nagasaka T
    Cell Transplant; 2004; 13(4):343-55. PubMed ID: 15468676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.