These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 19816758)
1. Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method. Haldar S; Kombrabail M; Krishnamoorthy G; Chattopadhyay A J Fluoresc; 2010 Jan; 20(1):407-13. PubMed ID: 19816758 [TBL] [Abstract][Full Text] [Related]
2. Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels. Haldar S; Chaudhuri A; Gu H; Koeppe RE; Kombrabail M; Krishnamoorthy G; Chattopadhyay A J Phys Chem B; 2012 Sep; 116(36):11056-64. PubMed ID: 22892073 [TBL] [Abstract][Full Text] [Related]
3. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. Sun H; Greathouse DV; Andersen OS; Koeppe RE J Biol Chem; 2008 Aug; 283(32):22233-43. PubMed ID: 18550546 [TBL] [Abstract][Full Text] [Related]
4. Monitoring gramicidin conformations in membranes: a fluorescence approach. Rawat SS; Kelkar DA; Chattopadhyay A Biophys J; 2004 Aug; 87(2):831-43. PubMed ID: 15298892 [TBL] [Abstract][Full Text] [Related]
5. Role of tryptophan residues in gramicidin channel organization and function. Chattopadhyay A; Rawat SS; Greathouse DV; Kelkar DA; Koeppe RE Biophys J; 2008 Jul; 95(1):166-75. PubMed ID: 18339735 [TBL] [Abstract][Full Text] [Related]
6. Tryptophan orientations in membrane-bound gramicidin and melittin-a comparative linear dichroism study on transmembrane and surface-bound peptides. Svensson FR; Lincoln P; Nordén B; Esbjörner EK Biochim Biophys Acta; 2011 Jan; 1808(1):219-28. PubMed ID: 20951675 [TBL] [Abstract][Full Text] [Related]
7. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers. Kelkar DA; Chattopadhyay A Biochim Biophys Acta; 2007 May; 1768(5):1103-13. PubMed ID: 17321493 [TBL] [Abstract][Full Text] [Related]
8. Model ion channels: gramicidin and alamethicin. Woolley GA; Wallace BA J Membr Biol; 1992 Aug; 129(2):109-36. PubMed ID: 1279177 [TBL] [Abstract][Full Text] [Related]
9. Conformation of gramicidin-A in CTAB micellar media. Shobini J; Mishra AK; Chandra N J Photochem Photobiol B; 2003; 70(2):117-24. PubMed ID: 12849702 [TBL] [Abstract][Full Text] [Related]
10. Monitoring ion channel conformations in membranes utilizing a novel dual fluorescence quenching approach. Kelkar DA; Chattopadhyay A Biochem Biophys Res Commun; 2006 May; 343(2):483-8. PubMed ID: 16546136 [TBL] [Abstract][Full Text] [Related]
11. Gramicidin conformational changes during riboflavin photosensitized oxidation in solution and the effect of N-methylation of tryptophan residues. Fuentealba D; López JJ; Palominos M; Salas CO; Soto-Arriaza MA Photochem Photobiol Sci; 2015 Apr; 14(4):748-56. PubMed ID: 25611022 [TBL] [Abstract][Full Text] [Related]
12. Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes. Salom D; Pérez-Payá E; Pascal J; Abad C Biochemistry; 1998 Oct; 37(40):14279-91. PubMed ID: 9760266 [TBL] [Abstract][Full Text] [Related]
13. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy. Zhu W; Becker DF Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643 [TBL] [Abstract][Full Text] [Related]
14. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach. Das A; Raghuraman H Biochim Biophys Acta Biomembr; 2021 May; 1863(5):183568. PubMed ID: 33529577 [TBL] [Abstract][Full Text] [Related]
15. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process. Hicks MR; Damianoglou A; Rodger A; Dafforn TR J Mol Biol; 2008 Nov; 383(2):358-66. PubMed ID: 18755199 [TBL] [Abstract][Full Text] [Related]
16. Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels. Mukherjee S; Chattopadhyay A Biochemistry; 1994 May; 33(17):5089-97. PubMed ID: 7513554 [TBL] [Abstract][Full Text] [Related]
17. The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles. Lin TH; Huang HB; Wei HA; Shiao SH; Chen YC Biopolymers; 2005 Jul; 78(4):179-86. PubMed ID: 15765548 [TBL] [Abstract][Full Text] [Related]
18. Effect of structural transition of the host assembly on dynamics of an ion channel peptide: a fluorescence approach. Rawat SS; Kelkar DA; Chattopadhyay A Biophys J; 2005 Nov; 89(5):3049-58. PubMed ID: 16100280 [TBL] [Abstract][Full Text] [Related]
19. Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR. Salgado J; Grage SL; Kondejewski LH; Hodges RS; McElhaney RN; Ulrich AS J Biomol NMR; 2001 Nov; 21(3):191-208. PubMed ID: 11775737 [TBL] [Abstract][Full Text] [Related]