These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19816846)

  • 1. [The molecular bases of Huntington's disease: the role played by oxidative stress].
    Tasset I; Sánchez F; Túnez I
    Rev Neurol; 2009 Oct 16-31; 49(8):424-9. PubMed ID: 19816846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants.
    Stack EC; Matson WR; Ferrante RJ
    Ann N Y Acad Sci; 2008 Dec; 1147():79-92. PubMed ID: 19076433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances on the pathogenesis of Huntington's disease.
    Petersén A; Mani K; Brundin P
    Exp Neurol; 1999 May; 157(1):1-18. PubMed ID: 10222105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative damage in Huntington's disease.
    Segovia J; Pérez-Severiano F
    Methods Mol Biol; 2004; 277():321-34. PubMed ID: 15201466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Huntington's disease: new paths to pathogenesis.
    Ross CA
    Cell; 2004 Jul; 118(1):4-7. PubMed ID: 15242639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal models of Huntington's disease.
    Gárdián G
    Ideggyogy Sz; 2006 Nov; 59(11-12):396-9. PubMed ID: 17203874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical damage and oxidative stress in Huntington's disease.
    Borlongan CV; Kanning K; Poulos SG; Freeman TB; Cahill DW; Sanberg PR
    J Fla Med Assoc; 1996 May; 83(5):335-41. PubMed ID: 8666972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective neuronal degeneration in Huntington's disease.
    Cowan CM; Raymond LA
    Curr Top Dev Biol; 2006; 75():25-71. PubMed ID: 16984809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pathophysiology of Huntington's disease: an update].
    Roze E; Betuing S; Deyts C; Vidailhet M; Caboche J
    Rev Neurol (Paris); 2008 Dec; 164(12):977-94. PubMed ID: 18808762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease.
    Chen CM
    Chang Gung Med J; 2011; 34(2):135-52. PubMed ID: 21539755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Huntington disease--yet another mad protein?].
    Petersén A; Hansson O; Brundin P
    Lakartidningen; 2001 Dec; 98(50):5756-8, 5761. PubMed ID: 11789098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington's disease like symptoms: possible behavioural, biochemical and cellular alterations.
    Kumar P; Kumar A
    Eur J Pharmacol; 2009 Aug; 615(1-3):91-101. PubMed ID: 19445928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of disease: Histone modifications in Huntington's disease.
    Sadri-Vakili G; Cha JH
    Nat Clin Pract Neurol; 2006 Jun; 2(6):330-8. PubMed ID: 16932577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Huntington's disease: the current state of research with peripheral tissues.
    Sassone J; Colciago C; Cislaghi G; Silani V; Ciammola A
    Exp Neurol; 2009 Oct; 219(2):385-97. PubMed ID: 19460373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-environment interactions, neuronal dysfunction and pathological plasticity in Huntington's disease.
    van Dellen A; Grote HE; Hannan AJ
    Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1007-19. PubMed ID: 16445565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Huntington's disease, calcium, and mitochondria.
    Giacomello M; Hudec R; Lopreiato R
    Biofactors; 2011; 37(3):206-18. PubMed ID: 21674644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease.
    Tobore TO
    J Neurosci Res; 2019 Nov; 97(11):1455-1468. PubMed ID: 31304621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting glutamate mediated excitotoxicity in Huntington's disease: neural progenitors and partial glutamate antagonist--memantine.
    Anitha M; Nandhu MS; Anju TR; Jes P; Paulose CS
    Med Hypotheses; 2011 Jan; 76(1):138-40. PubMed ID: 20943326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging, energy, and oxidative stress in neurodegenerative diseases.
    Beal MF
    Ann Neurol; 1995 Sep; 38(3):357-66. PubMed ID: 7668820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.