BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 19816878)

  • 1. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles.
    Min Q; Pang Y; Collins DJ; Kuklev NA; Gottselig K; Steuerman DW; Gordon R
    Opt Express; 2011 Jan; 19(2):1648-55. PubMed ID: 21263704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive label-free biosensors by using gap plasmons in gold nanoslits.
    Lee KL; Wang WS; Wei PK
    Biosens Bioelectron; 2008 Oct; 24(2):210-5. PubMed ID: 18499430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate.
    Popov VV; Fateev DV; Polischuk OV; Shur MS
    Opt Express; 2010 Aug; 18(16):16771-6. PubMed ID: 20721068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horizontal slot waveguide channel for enhanced Raman scattering.
    Rahomäki J; Nuutinen T; Karvonen L; Honkanen S; Vahimaa P
    Opt Express; 2013 Apr; 21(7):9060-8. PubMed ID: 23571995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanofocusing of light in an integrated silicon photonics platform.
    Desiatov B; Goykhman I; Levy U
    Opt Express; 2011 Jul; 19(14):13150-7. PubMed ID: 21747468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of evanescent focus by localized surface plasmons waveguide.
    Gao X; Gan X
    Opt Express; 2009 Dec; 17(25):22726-34. PubMed ID: 20052198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits.
    Fu Y; Liu Y; Zhou X; Xu Z; Fang F
    Opt Express; 2010 Feb; 18(4):3438-43. PubMed ID: 20389353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon polariton analogue to Young's double-slit experiment.
    Zia R; Brongersma ML
    Nat Nanotechnol; 2007 Jul; 2(7):426-9. PubMed ID: 18654327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films.
    Wang F; Xiao M; Sun K; Wei QH
    Opt Express; 2010 Jan; 18(1):63-71. PubMed ID: 20173823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the light transmission of plasmonic metamaterials through polygonal aperture arrays.
    Wang J; Zhou W; Li EP
    Opt Express; 2009 Oct; 17(22):20349-54. PubMed ID: 19997263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD.
    Bhatnagar K; Pathak A; Menke D; Cornish PV; Gangopadhyay K; Korampally V; Gangopadhyay S
    Nanotechnology; 2012 Dec; 23(49):495201. PubMed ID: 23154752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-loss surface-plasmonic nanobeam cavities.
    Kim MK; Lee SH; Choi M; Ahn BH; Park N; Lee YH; Min B
    Opt Express; 2010 May; 18(11):11089-96. PubMed ID: 20588966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography.
    Zhang X; Yonzon CR; Young MA; Stuart DA; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Dec; 152(6):195-206. PubMed ID: 16441180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological applications of localised surface plasmonic phenomenae.
    Stuart DA; Haes AJ; Yonzon CR; Hicks EM; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Feb; 152(1):13-32. PubMed ID: 16441155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-uniform excitation source for cascade enhancement of SERS via focusing of surface plasmons.
    Zhang H; Ho HP
    Opt Express; 2009 Nov; 17(23):21159-68. PubMed ID: 19997355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.