These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 19816981)
1. White biotechnology for cellulose manufacturing--the HoLiR concept. Kralisch D; Hessler N; Klemm D; Erdmann R; Schmidt W Biotechnol Bioeng; 2010 Mar; 105(4):740-7. PubMed ID: 19816981 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Fu L; Zhou P; Zhang S; Yang G Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124 [TBL] [Abstract][Full Text] [Related]
3. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063 [TBL] [Abstract][Full Text] [Related]
4. Microbial production of homogeneously layered cellulose pellicles in a membrane bioreactor. Hofinger M; Bertholdt G; Weuster-Botz D Biotechnol Bioeng; 2011 Sep; 108(9):2237-40. PubMed ID: 21495013 [TBL] [Abstract][Full Text] [Related]
5. [Influence of culture mode on bacterial cellulose production and its structure and property]. Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273 [TBL] [Abstract][Full Text] [Related]
6. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Bae S; Shoda M Biotechnol Bioeng; 2005 Apr; 90(1):20-8. PubMed ID: 15712301 [TBL] [Abstract][Full Text] [Related]
8. Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production. Setyawati MI; Chien LJ; Lee CK J Biotechnol; 2007 Oct; 132(1):38-43. PubMed ID: 17868946 [TBL] [Abstract][Full Text] [Related]
9. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Lee KY; Buldum G; Mantalaris A; Bismarck A Macromol Biosci; 2014 Jan; 14(1):10-32. PubMed ID: 23897676 [TBL] [Abstract][Full Text] [Related]
10. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Noro N; Sugano Y; Shoda M Appl Microbiol Biotechnol; 2004 Apr; 64(2):199-205. PubMed ID: 14564490 [TBL] [Abstract][Full Text] [Related]
11. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. Wu SC; Li MH J Biosci Bioeng; 2015 Oct; 120(4):444-9. PubMed ID: 25823854 [TBL] [Abstract][Full Text] [Related]
12. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Hyun JY; Mahanty B; Kim CG Appl Biochem Biotechnol; 2014 Apr; 172(8):3748-60. PubMed ID: 24569910 [TBL] [Abstract][Full Text] [Related]
13. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH. Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355 [TBL] [Abstract][Full Text] [Related]
14. Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Chao Y; Ishida T; Sugano Y; Shoda M Biotechnol Bioeng; 2000 May; 68(3):345-52. PubMed ID: 10745203 [TBL] [Abstract][Full Text] [Related]
15. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. Kornmann H; Valentinotti S; Duboc P; Marison I; von Stockar U J Biotechnol; 2004 Sep; 113(1-3):231-45. PubMed ID: 15380658 [TBL] [Abstract][Full Text] [Related]
16. Bacterial nanocellulose production and application: a 10-year overview. Jozala AF; de Lencastre-Novaes LC; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa A; Grotto D; Gerenutti M; Chaud MV Appl Microbiol Biotechnol; 2016 Mar; 100(5):2063-72. PubMed ID: 26743657 [TBL] [Abstract][Full Text] [Related]
17. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Cheng KC; Catchmark JM; Demirci A Biomacromolecules; 2011 Mar; 12(3):730-6. PubMed ID: 21250667 [TBL] [Abstract][Full Text] [Related]
18. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147 [TBL] [Abstract][Full Text] [Related]
19. Improved bacterial nanocellulose production from glucose without the loss of quality by evaluating thirteen agitator configurations at low speed. Chen G; Chen L; Wang W; Chen S; Wang H; Wei Y; Hong FF Microb Biotechnol; 2019 Nov; 12(6):1387-1402. PubMed ID: 31503407 [TBL] [Abstract][Full Text] [Related]
20. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]