BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19817502)

  • 1. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence.
    Tothfalusi L; Endrenyi L; Arieta AG
    Clin Pharmacokinet; 2009; 48(11):725-43. PubMed ID: 19817502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioequivalence of highly variable drugs and drug products.
    Midha KK; Rawson MJ; Hubbard JW
    Int J Clin Pharmacol Ther; 2005 Oct; 43(10):485-98. PubMed ID: 16240706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interchangeability between Generic and Reference Products: Limits of Average Bioequivalence Methodology.
    Lechat P
    Eur J Drug Metab Pharmacokinet; 2022 Nov; 47(6):777-787. PubMed ID: 35986193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viewpoint: observations on scaled average bioequivalence.
    Patterson SD; Jones B
    Pharm Stat; 2012; 11(1):1-7. PubMed ID: 22162308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial.
    Alloway RR; Vinks AA; Fukuda T; Mizuno T; King EC; Zou Y; Jiang W; Woodle ES; Tremblay S; Klawitter J; Klawitter J; Christians U
    PLoS Med; 2017 Nov; 14(11):e1002428. PubMed ID: 29135993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage designs versus European scaled average designs in bioequivalence studies for highly variable drugs: Which to choose?
    Molins E; Cobo E; Ocaña J
    Stat Med; 2017 Dec; 36(30):4777-4788. PubMed ID: 28853164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of average, scaled average, and population bioequivalence methods for assessment of highly variable drugs: an experience with doxifluridine in beagle dogs.
    Baek IH; Lee BY; Kang W; Kwon KI
    Eur J Pharm Sci; 2010 Jan; 39(1-3):175-80. PubMed ID: 19961933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory and study conditions for the determination of bioequivalence of highly variable drugs.
    Endrenyi L; Tothfalusi L
    J Pharm Pharm Sci; 2009; 12(1):138-49. PubMed ID: 19470298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing generic and innovator drugs: a review of 12 years of bioequivalence data from the United States Food and Drug Administration.
    Davit BM; Nwakama PE; Buehler GJ; Conner DP; Haidar SH; Patel DT; Yang Y; Yu LX; Woodcock J
    Ann Pharmacother; 2009 Oct; 43(10):1583-97. PubMed ID: 19776300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs.
    Wonnemann M; Frömke C; Koch A
    Pharm Res; 2015 Jan; 32(1):135-43. PubMed ID: 25033764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioequivalence for highly variable drugs: regulatory agreements, disagreements, and harmonization.
    Endrenyi L; Tothfalusi L
    J Pharmacokinet Pharmacodyn; 2019 Apr; 46(2):117-126. PubMed ID: 30798390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of bioequivalence for drugs with narrow therapeutic index: reduction of the regulatory burden.
    Endrenyi L; Tothfalusi L
    J Pharm Pharm Sci; 2013; 16(5):676-82. PubMed ID: 24393551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the bioequivalence of highly-variable drugs and drug products.
    Tothfalusi L; Endrenyi L; Midha KK; Rawson MJ; Hubbard JW
    Pharm Res; 2001 Jun; 18(6):728-33. PubMed ID: 11474774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs.
    Knahl SIE; Lang B; Fleischer F; Kieser M
    Eur J Clin Pharmacol; 2018 May; 74(5):549-559. PubMed ID: 29362819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling type I error in the reference-scaled bioequivalence evaluation of highly variable drugs.
    Ocaña J; Muñoz J
    Pharm Stat; 2019 Oct; 18(5):583-599. PubMed ID: 31190418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the US Food and Drug Administration.
    Davit BM; Chen ML; Conner DP; Haidar SH; Kim S; Lee CH; Lionberger RA; Makhlouf FT; Nwakama PE; Patel DT; Schuirmann DJ; Yu LX
    AAPS J; 2012 Dec; 14(4):915-24. PubMed ID: 22972221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability and Bioequivalence in Drug Development.
    Chow SC
    Wiley Interdiscip Rev Comput Stat; 2014; 6(4):304-312. PubMed ID: 25215170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach for widening the bioequivalence acceptance limits in the case of highly variable drugs.
    Boddy AW; Snikeris FC; Kringle RO; Wei GC; Oppermann JA; Midha KK
    Pharm Res; 1995 Dec; 12(12):1865-8. PubMed ID: 8786957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some thoughts on drug interchangeability.
    Chow SC; Song F; Chen M
    J Biopharm Stat; 2016; 26(1):178-86. PubMed ID: 26366703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a scaling approach for the bioequivalence of highly variable drugs.
    Haidar SH; Makhlouf F; Schuirmann DJ; Hyslop T; Davit B; Conner D; Yu LX
    AAPS J; 2008 Sep; 10(3):450-4. PubMed ID: 18726698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.