BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19817793)

  • 21. [Establishment and application of the model of islet impaired by NO free radical released from streptozotocin].
    Qian FY; Ouyang F; Fu DX; Ren TR
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):349-52. PubMed ID: 15969020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Islet-Targeted Genome-Wide Association Scan Identifies Novel Genes Implicated in Cytokine-Mediated Islet Stress in Type 2 Diabetes.
    Sharma PR; Mackey AJ; Dejene EA; Ramadan JW; Langefeld CD; Palmer ND; Taylor KD; Wagenknecht LE; Watanabe RM; Rich SS; Nunemaker CS
    Endocrinology; 2015 Sep; 156(9):3147-56. PubMed ID: 26018251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA expression profiling of human islets from individuals with and without type 2 diabetes: promises and pitfalls.
    Locke JM; Harries LW
    Biochem Soc Trans; 2012 Aug; 40(4):800-3. PubMed ID: 22817737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulated expression of GLUT2 in diabetes studied in transplanted pancreatic beta cells.
    Thorens B; Roduit R
    Biochem Soc Trans; 1994 Aug; 22(3):684-7. PubMed ID: 7821664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes.
    Kluth O; Matzke D; Schulze G; Schwenk RW; Joost HG; Schürmann A
    Diabetes; 2014 Dec; 63(12):4230-8. PubMed ID: 25053586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomics of Islet (Dys)function and Type 2 Diabetes.
    Lawlor N; Khetan S; Ucar D; Stitzel ML
    Trends Genet; 2017 Apr; 33(4):244-255. PubMed ID: 28245910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apoptotic, regenerative, and immune-related signaling in human islets from type 2 diabetes individuals.
    Nyblom HK; Bugliani M; Fung E; Boggi U; Zubarev R; Marchetti P; Bergsten P
    J Proteome Res; 2009 Dec; 8(12):5650-6. PubMed ID: 19852514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolomics applied to the pancreatic islet.
    Gooding JR; Jensen MV; Newgard CB
    Arch Biochem Biophys; 2016 Jan; 589():120-30. PubMed ID: 26116790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GLUTS and diabetes.
    Lancet; 1991 Jun; 337(8756):1517-8. PubMed ID: 1675376
    [No Abstract]   [Full Text] [Related]  

  • 30. Patch-Seq Links Single-Cell Transcriptomes to Human Islet Dysfunction in Diabetes.
    Camunas-Soler J; Dai XQ; Hang Y; Bautista A; Lyon J; Suzuki K; Kim SK; Quake SR; MacDonald PE
    Cell Metab; 2020 May; 31(5):1017-1031.e4. PubMed ID: 32302527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurofunctional imaging of β-cell dynamics.
    Harris PE; Leibel RL
    Diabetes Obes Metab; 2012 Oct; 14 Suppl 3(0 3):91-100. PubMed ID: 22928569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A new conceptual approach for searching for molecular causes of diabetes mellitus, based on the study of functioning of hormonal signaling systems].
    Pertseva MN; Kuznetsova LA; Shpakov AO
    Zh Evol Biokhim Fiziol; 2013; 49(5):313-22. PubMed ID: 25434186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Integrated Map of Cell Type-Specific Gene Expression in Pancreatic Islets.
    Elgamal RM; Kudtarkar P; Melton RL; Mummey HM; Benaglio P; Okino ML; Gaulton KJ
    Diabetes; 2023 Nov; 72(11):1719-1728. PubMed ID: 37582230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes.
    Lawlor N; George J; Bolisetty M; Kursawe R; Sun L; Sivakamasundari V; Kycia I; Robson P; Stitzel ML
    Genome Res; 2017 Feb; 27(2):208-222. PubMed ID: 27864352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opioid peptides and metabolic regulation.
    Giugliano D; Torella R; Lefèbvre PJ; D'Onofrio F
    Diabetologia; 1988 Jan; 31(1):3-15. PubMed ID: 3280367
    [No Abstract]   [Full Text] [Related]  

  • 36. New tools for experimental diabetes research: Cellular reprogramming and genome editing.
    Otonkoski T
    Ups J Med Sci; 2016 May; 121(2):146-50. PubMed ID: 27007444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of mitogen-activated protein kinase phosphate-5 aggravates islet dysfunction in mice with type 1 and type 2 diabetes.
    Zhao T; Tian Y; Zhao J; Sun D; Ma Y; Wang W; Yan W; Jiao P; Ma J
    FASEB J; 2024 Feb; 38(3):e23437. PubMed ID: 38305849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of vanadate on the expression of genes involved in fuel homeostasis in animal models of Type I and Type II diabetes.
    Brichard SM
    Mol Cell Biochem; 1995 Dec 6-20; 153(1-2):121-4. PubMed ID: 8927026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS.
    Metz TO; Jacobs JM; Gritsenko MA; Fontès G; Qian WJ; Camp DG; Poitout V; Smith RD
    J Proteome Res; 2006 Dec; 5(12):3345-54. PubMed ID: 17137336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression network analysis for diabetes mellitus type 2 based on expressed level of islet cells.
    Cui Y; Chen W; Chi J; Wang L
    Ann Endocrinol (Paris); 2016 Feb; 77(1):22-9. PubMed ID: 26874994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.