These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19818338)

  • 1. Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse.
    Toyoshima M; Sakurai K; Shimazaki K; Takeda Y; Shimoda Y; Watanabe K
    Dev Biol; 2009 Dec; 336(2):192-200. PubMed ID: 19818338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem.
    Toyoshima M; Sakurai K; Shimazaki K; Takeda Y; Nakamoto M; Serizawa S; Shimoda Y; Watanabe K
    J Comp Neurol; 2009 Apr; 513(4):349-62. PubMed ID: 19177518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse.
    Sakurai K; Toyoshima M; Ueda H; Matsubara K; Takeda Y; Karagogeos D; Shimoda Y; Watanabe K
    Dev Neurobiol; 2009 Oct; 69(12):811-24. PubMed ID: 19672956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats.
    Friauf E
    J Comp Neurol; 1993 Aug; 334(1):59-74. PubMed ID: 8408759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide/cyclic guanosine monophosphate pathway in the peripheral and central auditory system of the rat.
    Fessenden JD; Altschuler RA; Seasholtz AF; Schacht J
    J Comp Neurol; 1999 Feb; 404(1):52-63. PubMed ID: 9886024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea.
    Kitzes LM; Kageyama GH; Semple MN; Kil J
    J Comp Neurol; 1995 Mar; 353(3):341-63. PubMed ID: 7751435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus.
    Kraus KS; Illing RB
    J Comp Neurol; 2004 Jul; 475(3):374-90. PubMed ID: 15221952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.
    Howell DM; Morgan WJ; Jarjour AA; Spirou GA; Berrebi AS; Kennedy TE; Mathers PH
    J Comp Neurol; 2007 Oct; 504(5):533-49. PubMed ID: 17701984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonin immunoreactivity in auditory brainstem neurons of the postnatal monoamine oxidase-A knockout mouse.
    Thompson AM
    Brain Res; 2008 Sep; 1228():58-67. PubMed ID: 18634763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil.
    Kil J; Kageyama GH; Semple MN; Kitzes LM
    J Comp Neurol; 1995 Mar; 353(3):317-40. PubMed ID: 7751434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses.
    Nishimaki T; Jang IS; Ishibashi H; Yamaguchi J; Nabekura J
    Eur J Neurosci; 2007 Jul; 26(2):323-30. PubMed ID: 17623021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The superior olivary complex in C57BL/6 mice.
    Ollo C; Schwartz IR
    Am J Anat; 1979 Jul; 155(3):349-73. PubMed ID: 474450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse.
    Youssoufian M; Couchman K; Shivdasani MN; Paolini AG; Walmsley B
    J Comp Neurol; 2008 Jan; 506(3):442-51. PubMed ID: 18041784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ephrin-A2 and ephrin-A5 guide contralateral targeting but not topographic mapping of ventral cochlear nucleus axons.
    Abdul-Latif ML; Salazar JA; Marshak S; Dinh ML; Cramer KS
    Neural Dev; 2015 Dec; 10():27. PubMed ID: 26666565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNTFRalpha and CNTF expressions in the auditory brainstem: light and electron microscopy study.
    Hafidi A; Decourt B; MacLennan AJ
    Hear Res; 2004 Aug; 194(1-2):14-24. PubMed ID: 15276672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3.
    Sakurai K; Toyoshima M; Takeda Y; Shimoda Y; Watanabe K
    Neurosci Lett; 2010 Apr; 473(2):102-6. PubMed ID: 20176085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early appearance of inhibitory input to the MNTB supports binaural processing during development.
    Green JS; Sanes DH
    J Neurophysiol; 2005 Dec; 94(6):3826-35. PubMed ID: 16120660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.
    Kungel M; Friauf E
    Anat Embryol (Berl); 1995 May; 191(5):425-43. PubMed ID: 7625613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory brainstem neural activation patterns are altered in EphA4- and ephrin-B2-deficient mice.
    Miko IJ; Nakamura PA; Henkemeyer M; Cramer KS
    J Comp Neurol; 2007 Dec; 505(6):669-81. PubMed ID: 17948875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.