These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 19818443)

  • 1. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone.
    Chen JH; Liu C; You L; Simmons CA
    J Biomech; 2010 Jan; 43(1):108-18. PubMed ID: 19818443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposal for the regulatory mechanism of Wolff's law.
    Mullender MG; Huiskes R
    J Orthop Res; 1995 Jul; 13(4):503-12. PubMed ID: 7674066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional trabecular alignment model.
    Bono ES; Smolinski P; Casagranda A; Xu J
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):125-31. PubMed ID: 12745426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanobiology of bone tissue.
    Klein-Nulend J; Bacabac RG; Mullender MG
    Pathol Biol (Paris); 2005 Dec; 53(10):576-80. PubMed ID: 16364809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.
    Pearson OM; Lieberman DE
    Am J Phys Anthropol; 2004; Suppl 39():63-99. PubMed ID: 15605390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array.
    Skerry TM; Suva LJ
    Cell Biochem Funct; 2003 Sep; 21(3):223-9. PubMed ID: 12910474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?
    Vatsa A; Breuls RG; Semeins CM; Salmon PL; Smit TH; Klein-Nulend J
    Bone; 2008 Sep; 43(3):452-8. PubMed ID: 18625577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteocytes and WNT: the mechanical control of bone formation.
    Galli C; Passeri G; Macaluso GM
    J Dent Res; 2010 Apr; 89(4):331-43. PubMed ID: 20200416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Describing force-induced bone growth and adaptation by a mathematical model.
    Maldonado S; Findeisen R; Allgöwer F
    J Musculoskelet Neuronal Interact; 2008; 8(1):15-7. PubMed ID: 18398254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A generic 3-dimensional system to mimic trabecular bone surface adaptation.
    Nowak M
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):313-7. PubMed ID: 17132617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanotransduction in osteoblast regulation and bone disease.
    Papachroni KK; Karatzas DN; Papavassiliou KA; Basdra EK; Papavassiliou AG
    Trends Mol Med; 2009 May; 15(5):208-16. PubMed ID: 19362057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cell biology of bone metabolism.
    Datta HK; Ng WF; Walker JA; Tuck SP; Varanasi SS
    J Clin Pathol; 2008 May; 61(5):577-87. PubMed ID: 18441154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal mechanobiology: interpretation by external force and engineered substratum.
    McCullen SD; Haslauer CM; Loboa EG
    J Biomech; 2010 Jan; 43(1):119-27. PubMed ID: 19815216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation.
    Weyts FA; Bosmans B; Niesing R; van Leeuwen JP; Weinans H
    Calcif Tissue Int; 2003 Apr; 72(4):505-12. PubMed ID: 12532282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and electrical interactions in bone remodeling.
    Spadaro JA
    Bioelectromagnetics; 1997; 18(3):193-202. PubMed ID: 9096837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved.
    Liu J; Zhao Z; Li J; Zou L; Shuler C; Zou Y; Huang X; Li M; Wang J
    J Cell Biochem; 2009 May; 107(2):224-32. PubMed ID: 19259952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.