These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 19818993)

  • 1. Can carbon offsetting pay for upland ecological restoration?
    Worrall F; Evans MG; Bonn A; Reed MS; Chapman D; Holden J
    Sci Total Environ; 2009 Dec; 408(1):26-36. PubMed ID: 19818993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.
    Yallop AR; Clutterbuck B
    Sci Total Environ; 2009 Jun; 407(12):3803-13. PubMed ID: 19345986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the probability of carbon and greenhouse gas benefit from the management of peat soils.
    Worrall F; Bell MJ; Bhogal A
    Sci Total Environ; 2010 Jun; 408(13):2657-66. PubMed ID: 20427076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon budget for a British upland peat catchment.
    Worrall F; Reed M; Warburton J; Burt T
    Sci Total Environ; 2003 Aug; 312(1-3):133-46. PubMed ID: 12873406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of sheep grazing on the carbon balance of a peatland.
    Worrall F; Clay GD
    Sci Total Environ; 2012 Nov; 438():426-34. PubMed ID: 23026149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of physical properties to predict the effects of tillage practices on organic matter dynamics in three Illinois soils.
    Yoo G; Nissen TM; Wander MM
    J Environ Qual; 2006; 35(4):1576-83. PubMed ID: 16825478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Land management as a factor controlling dissolved organic carbon release from upland peat soils 2: changes in DOC productivity over four decades.
    Clutterbuck B; Yallop AR
    Sci Total Environ; 2010 Nov; 408(24):6179-91. PubMed ID: 20869100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon sequestration potential in reclaimed mine sites in seven east-central states.
    Sperow M
    J Environ Qual; 2006; 35(4):1428-38. PubMed ID: 16825463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multi-annual nitrogen budget of a peat-covered catchment--changing from sink to source?
    Worrall F; Clay GD; Burt TP; Rose R
    Sci Total Environ; 2012 Sep; 433():178-88. PubMed ID: 22789818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.
    Richey JE; Melack JM; Aufdenkampe AK; Ballester VM; Hess LL
    Nature; 2002 Apr; 416(6881):617-20. PubMed ID: 11948346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions.
    Janssens IA; Freibauer A; Ciais P; Smith P; Nabuurs GJ; Folberth G; Schlamadinger B; Hutjes RW; Ceulemans R; Schulze ED; Valentini R; Dolman AJ
    Science; 2003 Jun; 300(5625):1538-42. PubMed ID: 12764201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.
    Shrestha RK; Lal R
    Environ Int; 2006 Aug; 32(6):781-96. PubMed ID: 16797072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peat soils as a source of lead contamination to upland fluvial systems.
    Rothwell JJ; Evans MG; Daniels SM; Allott TE
    Environ Pollut; 2008 Jun; 153(3):582-9. PubMed ID: 17949867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration.
    Pan GX; Li LQ; Zhang Q; Wang XK; Sun XB; Xu XB; Jiang DA
    J Environ Sci (China); 2005; 17(1):1-7. PubMed ID: 15900748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking carbon sequestration science with local sustainability: an integrated assessment approach.
    Yin Y; Xu W; Zhou S
    J Environ Manage; 2007 Nov; 85(3):711-21. PubMed ID: 17098351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the regional carbon cycle of the biosphere: policy, science and land-use decisions.
    Cihlar J
    J Environ Manage; 2007 Nov; 85(3):785-90. PubMed ID: 17202029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil organic carbon and nitrogen accumulation in plots of rhizoma perennial peanut and bahiagrass grown in elevated carbon dioxide and temperature.
    Allen LH; Albrecht SL; Boote KJ; Thomas JM; Newman YC; Skirvin KW
    J Environ Qual; 2006; 35(4):1405-12. PubMed ID: 16825461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.