BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 19819014)

  • 1. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.
    Gulati K; Ramakrishnan S; Aw MS; Atkins GJ; Findlay DM; Losic D
    Acta Biomater; 2012 Jan; 8(1):449-56. PubMed ID: 21930254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S
    Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface characterization of Ca-P/Ag/TiO2 nanotube composite layers on Ti intended for biomedical applications.
    Roguska A; Pisarek M; Andrzejczuk M; Lewandowska M; Kurzydlowski KJ; Janik-Czachor M
    J Biomed Mater Res A; 2012 Aug; 100(8):1954-62. PubMed ID: 22528961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications.
    Saji VS; Choe HC; Brantley WA
    Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemocompatibility of titania nanotube arrays.
    Smith BS; Yoriya S; Grissom L; Grimes CA; Popat KC
    J Biomed Mater Res A; 2010 Nov; 95(2):350-60. PubMed ID: 20629021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite.
    Kodama A; Bauer S; Komatsu A; Asoh H; Ono S; Schmuki P
    Acta Biomater; 2009 Jul; 5(6):2322-30. PubMed ID: 19332383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins.
    Yu WQ; Qiu J; Zhang FQ
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):400-5. PubMed ID: 21377339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces.
    Tang CS; Schmutz P; Petronis S; Textor M; Keller B; Vörös J
    Biotechnol Bioeng; 2005 Aug; 91(3):285-95. PubMed ID: 15977251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes.
    Wang D; Liu Y; Wang C; Zhou F; Liu W
    ACS Nano; 2009 May; 3(5):1249-57. PubMed ID: 19413294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional polymer coatings for cell microarray applications.
    Kurkuri MD; Driever C; Johnson G; McFarland G; Thissen H; Voelcker NH
    Biomacromolecules; 2009 May; 10(5):1163-72. PubMed ID: 19331405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath.
    Lockman Z; Ismail S; Sreekantan S; Schmidt-Mende L; Macmanus-Driscoll JL
    Nanotechnology; 2010 Feb; 21(5):055601. PubMed ID: 20023309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.