BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19819231)

  • 1. Cell-autonomous generation of mitochondrial superoxide is a signal for cell death in differentiated neuronal precursor cells.
    Scott CJ; Seidler EA; Levin LA
    Brain Res; 2010 Jan; 1306():142-8. PubMed ID: 19819231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis.
    Fukui M; Choi HJ; Zhu BT
    Toxicol Appl Pharmacol; 2012 Jul; 262(2):156-66. PubMed ID: 22575170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion.
    Lieven CJ; Hoegger MJ; Schlieve CR; Levin LA
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1477-85. PubMed ID: 16565382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B
    Chan W; Almasieh M; Catrinescu MM; Levin LA
    Am J Pathol; 2018 Jan; 188(1):160-172. PubMed ID: 29037851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide is an associated signal for apoptosis in axonal injury.
    Kanamori A; Catrinescu MM; Kanamori N; Mears KA; Beaubien R; Levin LA
    Brain; 2010 Sep; 133(9):2612-25. PubMed ID: 20495185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of retinal ganglion specific-cell death in Leber hereditary optic neuropathy.
    Levin LA
    Trans Am Ophthalmol Soc; 2007; 105():379-91. PubMed ID: 18427623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial superoxide radicals differentially affect muscle activity and neural function.
    Godenschwege T; Forde R; Davis CP; Paul A; Beckwith K; Duttaroy A
    Genetics; 2009 Sep; 183(1):175-84. PubMed ID: 19546321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential production of superoxide by neuronal mitochondria.
    Hoegger MJ; Lieven CJ; Levin LA
    BMC Neurosci; 2008 Jan; 9():4. PubMed ID: 18182110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells.
    Nguyen SM; Alexejun CN; Levin LA
    Antioxid Redox Signal; 2003 Oct; 5(5):629-34. PubMed ID: 14580319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic study of mtROS-JNK-SOD2 signaling in bupivacaine-induced neuron oxidative stress.
    Liu Z; Xu S; Ji Z; Xu H; Zhao W; Xia Z; Xu R
    Aging (Albany NY); 2020 Jul; 12(13):13463-13476. PubMed ID: 32658869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels.
    Zimmerman MC; Oberley LW; Flanagan SW
    J Neurochem; 2007 Aug; 102(3):609-18. PubMed ID: 17394531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of superoxide dismutases in cardiac progenitor cells demonstrates a critical role for manganese superoxide dismutase.
    Seshadri G; Che PL; Boopathy AV; Davis ME
    Stem Cells Dev; 2012 Nov; 21(17):3136-46. PubMed ID: 22758933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion.
    Liu Y; Tang L; Chen B
    Free Radic Biol Med; 2012 Mar; 52(5):909-15. PubMed ID: 22240151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotection against superoxide anion radical by metallocorroles in cellular and murine models of optic neuropathy.
    Kanamori A; Catrinescu MM; Mahammed A; Gross Z; Levin LA
    J Neurochem; 2010 Jul; 114(2):488-98. PubMed ID: 20456018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival.
    Schlieve CR; Lieven CJ; Levin LA
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3878-86. PubMed ID: 16936100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordering of neuronal apoptosis signaling: a superoxide burst precedes mitochondrial cytochrome c release in a growth factor deprivation model.
    Lieven CJ; Thurber KA; Levin EJ; Levin LA
    Apoptosis; 2012 Jun; 17(6):591-9. PubMed ID: 22411528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SOD2 Mediates Amifostine-Induced Protection against Glutamate in PC12 Cells.
    Jia J; Zhang L; Shi X; Wu M; Zhou X; Liu X; Huo T
    Oxid Med Cell Longev; 2016; 2016():4202437. PubMed ID: 26770652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis.
    Qi X; Lewin AS; Sun L; Hauswirth WW; Guy J
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):681-91. PubMed ID: 17251466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools for studying early events in optic neuropathies.
    Lieven CJ; Levin LA
    Eye (Lond); 2007 Dec; 21 Suppl 1():S21-4. PubMed ID: 18157175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspase-independent component of retinal ganglion cell death, in vitro.
    Tezel G; Yang X
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4049-59. PubMed ID: 15505055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.