BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 19819329)

  • 1. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed?
    Keszler A; Zhang Y; Hogg N
    Free Radic Biol Med; 2010 Jan; 48(1):55-64. PubMed ID: 19819329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen.
    Kharitonov VG; Sundquist AR; Sharma VS
    J Biol Chem; 1995 Nov; 270(47):28158-64. PubMed ID: 7499306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.
    Dahm CC; Moore K; Murphy MP
    J Biol Chem; 2006 Apr; 281(15):10056-65. PubMed ID: 16481325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling.
    Smith BC; Marletta MA
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):498-506. PubMed ID: 23127359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and stability of S-nitrosothiols in RAW 264.7 cells.
    Zhang Y; Hogg N
    Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L467-74. PubMed ID: 14672925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine.
    Wiesweg M; Berchner-Pfannschmidt U; Fandrey J; Petrat F; de Groot H; Kirsch M
    Free Radic Res; 2013 Feb; 47(2):104-15. PubMed ID: 23181469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical biology of S-nitrosothiols.
    Broniowska KA; Hogg N
    Antioxid Redox Signal; 2012 Oct; 17(7):969-80. PubMed ID: 22468855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a formaldehyde dehydrogenase-glutathione pathway in protein S-nitrosation in mammalian cells.
    Haqqani AS; Do SK; Birnboim HC
    Nitric Oxide; 2003 Nov; 9(3):172-81. PubMed ID: 14732341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient nitrosation of glutathione by nitric oxide.
    Kolesnik B; Palten K; Schrammel A; Stessel H; Schmidt K; Mayer B; Gorren AC
    Free Radic Biol Med; 2013 Oct; 63():51-64. PubMed ID: 23660531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations.
    Kolesnik B; Heine CL; Schmidt R; Schmidt K; Mayer B; Gorren AC
    Free Radic Biol Med; 2014 Nov; 76():286-98. PubMed ID: 25236749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.
    Wolhuter K; Whitwell HJ; Switzer CH; Burgoyne JR; Timms JF; Eaton P
    Mol Cell; 2018 Feb; 69(3):438-450.e5. PubMed ID: 29358077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of S-nitrosothiols from regiospecific reaction of thiols with N-nitrosotryptophan derivatives.
    Sonnenschein K; de Groot H; Kirsch M
    J Biol Chem; 2004 Oct; 279(44):45433-40. PubMed ID: 15308658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction.
    Wink DA; Nims RW; Darbyshire JF; Christodoulou D; Hanbauer I; Cox GW; Laval F; Laval J; Cook JA; Krishna MC
    Chem Res Toxicol; 1994; 7(4):519-25. PubMed ID: 7981416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism.
    Jourd'heuil D; Jourd'heuil FL; Feelisch M
    J Biol Chem; 2003 May; 278(18):15720-6. PubMed ID: 12595536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols.
    Stoyanovsky DA; Tyurina YY; Tyurin VA; Anand D; Mandavia DN; Gius D; Ivanova J; Pitt B; Billiar TR; Kagan VE
    J Am Chem Soc; 2005 Nov; 127(45):15815-23. PubMed ID: 16277524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of nitric oxide release from S-nitrosothiols.
    Singh RJ; Hogg N; Joseph J; Kalyanaraman B
    J Biol Chem; 1996 Aug; 271(31):18596-603. PubMed ID: 8702510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating the regulator: nitric oxide control of post-translational modifications.
    Gupta KJ; Kolbert Z; Durner J; Lindermayr C; Corpas FJ; Brouquisse R; Barroso JB; Umbreen S; Palma JM; Hancock JT; Petrivalsky M; Wendehenne D; Loake GJ
    New Phytol; 2020 Sep; 227(5):1319-1325. PubMed ID: 32339293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions.
    Stubauer G; Giuffrè A; Sarti P
    J Biol Chem; 1999 Oct; 274(40):28128-33. PubMed ID: 10497164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases.
    Wynia-Smith SL; Smith BC
    Nitric Oxide; 2017 Feb; 63():52-60. PubMed ID: 27720836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.