These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 19819329)
1. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Keszler A; Zhang Y; Hogg N Free Radic Biol Med; 2010 Jan; 48(1):55-64. PubMed ID: 19819329 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. Kharitonov VG; Sundquist AR; Sharma VS J Biol Chem; 1995 Nov; 270(47):28158-64. PubMed ID: 7499306 [TBL] [Abstract][Full Text] [Related]
3. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. Dahm CC; Moore K; Murphy MP J Biol Chem; 2006 Apr; 281(15):10056-65. PubMed ID: 16481325 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Smith BC; Marletta MA Curr Opin Chem Biol; 2012 Dec; 16(5-6):498-506. PubMed ID: 23127359 [TBL] [Abstract][Full Text] [Related]
5. Formation and stability of S-nitrosothiols in RAW 264.7 cells. Zhang Y; Hogg N Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L467-74. PubMed ID: 14672925 [TBL] [Abstract][Full Text] [Related]
6. Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine. Wiesweg M; Berchner-Pfannschmidt U; Fandrey J; Petrat F; de Groot H; Kirsch M Free Radic Res; 2013 Feb; 47(2):104-15. PubMed ID: 23181469 [TBL] [Abstract][Full Text] [Related]
7. The chemical biology of S-nitrosothiols. Broniowska KA; Hogg N Antioxid Redox Signal; 2012 Oct; 17(7):969-80. PubMed ID: 22468855 [TBL] [Abstract][Full Text] [Related]
8. The role of a formaldehyde dehydrogenase-glutathione pathway in protein S-nitrosation in mammalian cells. Haqqani AS; Do SK; Birnboim HC Nitric Oxide; 2003 Nov; 9(3):172-81. PubMed ID: 14732341 [TBL] [Abstract][Full Text] [Related]
10. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations. Kolesnik B; Heine CL; Schmidt R; Schmidt K; Mayer B; Gorren AC Free Radic Biol Med; 2014 Nov; 76():286-98. PubMed ID: 25236749 [TBL] [Abstract][Full Text] [Related]
11. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation. Wolhuter K; Whitwell HJ; Switzer CH; Burgoyne JR; Timms JF; Eaton P Mol Cell; 2018 Feb; 69(3):438-450.e5. PubMed ID: 29358077 [TBL] [Abstract][Full Text] [Related]
12. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. Sengupta R; Holmgren A Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369 [TBL] [Abstract][Full Text] [Related]
13. Formation of S-nitrosothiols from regiospecific reaction of thiols with N-nitrosotryptophan derivatives. Sonnenschein K; de Groot H; Kirsch M J Biol Chem; 2004 Oct; 279(44):45433-40. PubMed ID: 15308658 [TBL] [Abstract][Full Text] [Related]
14. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Wink DA; Nims RW; Darbyshire JF; Christodoulou D; Hanbauer I; Cox GW; Laval F; Laval J; Cook JA; Krishna MC Chem Res Toxicol; 1994; 7(4):519-25. PubMed ID: 7981416 [TBL] [Abstract][Full Text] [Related]
15. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. Jourd'heuil D; Jourd'heuil FL; Feelisch M J Biol Chem; 2003 May; 278(18):15720-6. PubMed ID: 12595536 [TBL] [Abstract][Full Text] [Related]
16. Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. Stoyanovsky DA; Tyurina YY; Tyurin VA; Anand D; Mandavia DN; Gius D; Ivanova J; Pitt B; Billiar TR; Kagan VE J Am Chem Soc; 2005 Nov; 127(45):15815-23. PubMed ID: 16277524 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of nitric oxide release from S-nitrosothiols. Singh RJ; Hogg N; Joseph J; Kalyanaraman B J Biol Chem; 1996 Aug; 271(31):18596-603. PubMed ID: 8702510 [TBL] [Abstract][Full Text] [Related]
18. Regulating the regulator: nitric oxide control of post-translational modifications. Gupta KJ; Kolbert Z; Durner J; Lindermayr C; Corpas FJ; Brouquisse R; Barroso JB; Umbreen S; Palma JM; Hancock JT; Petrivalsky M; Wendehenne D; Loake GJ New Phytol; 2020 Sep; 227(5):1319-1325. PubMed ID: 32339293 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. Stubauer G; Giuffrè A; Sarti P J Biol Chem; 1999 Oct; 274(40):28128-33. PubMed ID: 10497164 [TBL] [Abstract][Full Text] [Related]
20. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases. Wynia-Smith SL; Smith BC Nitric Oxide; 2017 Feb; 63():52-60. PubMed ID: 27720836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]