These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19819526)

  • 1. Application of discriminant analysis with clustered data to determine anthropogenic metals contamination.
    Anderson RH; Farrar DB; Thoms SR
    Sci Total Environ; 2009 Dec; 408(1):50-6. PubMed ID: 19819526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran: a study based on multivariate data analysis.
    Qishlaqi A; Moore F; Forghani G
    J Hazard Mater; 2009 Dec; 172(1):374-84. PubMed ID: 19647938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical features of topsoils in the Gaza Strip: natural occurrence and anthropogenic inputs.
    Shomar BH; Müller G; Yahya A
    Environ Res; 2005 Jul; 98(3):372-82. PubMed ID: 15910793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling.
    Vijver MG; Spijker J; Vink JP; Posthuma L
    Environ Pollut; 2008 Dec; 156(3):832-9. PubMed ID: 18617300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cycling and ecosystem impact of metals in contaminated calcareous dredged sediment-derived soils (Flanders, Belgium).
    Tack FM; Vandecasteele B
    Sci Total Environ; 2008 Aug; 400(1-3):283-9. PubMed ID: 18644617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt.
    Du Laing G; Vandecasteele B; De Grauwe P; Moors W; Lesage E; Meers E; Tack FM; Verloo MG
    J Environ Monit; 2007 May; 9(5):449-55. PubMed ID: 17492090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments.
    Snape I; Scouller RC; Stark SC; Stark J; Riddle MJ; Gore DB
    Chemosphere; 2004 Nov; 57(6):491-504. PubMed ID: 15350411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical evaluation of soil contamination assessment methods for trace metals.
    Desaules A
    Sci Total Environ; 2012 Jun; 426():120-31. PubMed ID: 22542230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metals contamination in soils and vegetables in metal smelter contaminated sites in Huangshi, China.
    Yan S; Ling QC; Bao ZY
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):361-6. PubMed ID: 17767366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island.
    Santos IR; Silva-Filho EV; Schaefer CE; Albuquerque-Filho MR; Campos LS
    Mar Pollut Bull; 2005 Feb; 50(2):185-94. PubMed ID: 15737360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils.
    Vaccaro S; Sobiecka E; Contini S; Locoro G; Free G; Gawlik BM
    Chemosphere; 2007 Oct; 69(7):1055-63. PubMed ID: 17544480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS.
    Coynel A; Blanc G; Marache A; Schäfer J; Dabrin A; Maneux E; Bossy C; Masson M; Lavaux G
    J Environ Monit; 2009 May; 11(5):962-76. PubMed ID: 19436854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of geochemical methods for discrimination of metal contamination in Antarctic marine sediments: a case study from Casey Station.
    Scouller RC; Snape I; Stark JS; Gore DB
    Chemosphere; 2006 Oct; 65(2):294-309. PubMed ID: 16650458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction.
    Peijnenburg WJ; Zablotskaja M; Vijver MG
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):163-79. PubMed ID: 17445889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated in-home sediment contaminant concentrations - the consequence of a particle settling-winnowing process from Hurricane Katrina floodwaters.
    Ashley NA; Valsaraj KT; Thibodeaux LJ
    Chemosphere; 2008 Jan; 70(5):833-40. PubMed ID: 17723238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal partitioning and uptake in central Ontario forests.
    Watmough SA; Dillon PJ; Epova EN
    Environ Pollut; 2005 Apr; 134(3):493-502. PubMed ID: 15620595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impacts of training activities at an air weapons range.
    Bordeleau G; Martel R; Ampleman G; Thiboutot S
    J Environ Qual; 2008; 37(2):308-17. PubMed ID: 18268292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of alluvial soils according to their potential environmental risk: a case study for Belgian catchments.
    Cappuyns V; Swennen R
    J Environ Monit; 2007 Apr; 9(4):319-28. PubMed ID: 17410307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.