These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 19819875)
1. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Phillips RP; Bernhardt ES; Schlesinger WH Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875 [TBL] [Abstract][Full Text] [Related]
2. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Phillips RP; Finzi AC; Bernhardt ES Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050 [TBL] [Abstract][Full Text] [Related]
3. Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Drake JE; Stoy PC; Jackson RB; DeLucia EH Plant Cell Environ; 2008 Nov; 31(11):1663-72. PubMed ID: 18684240 [TBL] [Abstract][Full Text] [Related]
4. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2012 Jul; 32(7):847-58. PubMed ID: 22696270 [TBL] [Abstract][Full Text] [Related]
5. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings. Ambebe TF; Dang QL; Li J Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132 [TBL] [Abstract][Full Text] [Related]
6. Elevated CO and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. Fransson PM; Johansson EM FEMS Microbiol Ecol; 2010 Feb; 71(2):186-96. PubMed ID: 19889031 [TBL] [Abstract][Full Text] [Related]
7. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Fleischmann F; Raidl S; Osswald WF Environ Pollut; 2010 Apr; 158(4):1051-60. PubMed ID: 19880228 [TBL] [Abstract][Full Text] [Related]
8. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization. Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405 [TBL] [Abstract][Full Text] [Related]
9. Fungal communities influence root exudation rates in pine seedlings. Meier IC; Avis PG; Phillips RP FEMS Microbiol Ecol; 2013 Mar; 83(3):585-95. PubMed ID: 23013386 [TBL] [Abstract][Full Text] [Related]
10. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Yin H; Li Y; Xiao J; Xu Z; Cheng X; Liu Q Glob Chang Biol; 2013 Jul; 19(7):2158-67. PubMed ID: 23504744 [TBL] [Abstract][Full Text] [Related]
11. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
12. Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO enrichment? Atwell BJ; Henery ML; Ball MC Plant Cell Environ; 2009 May; 32(5):553-66. PubMed ID: 19210643 [TBL] [Abstract][Full Text] [Related]
13. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
14. Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones. Pritchard SG; Maier CA; Johnsen KH; Grabman AJ; Chalmers AP; Burke MK Tree Physiol; 2010 Oct; 30(10):1299-310. PubMed ID: 20668289 [TBL] [Abstract][Full Text] [Related]
15. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Warren JM; Iversen CM; Garten CT; Norby RJ; Childs J; Brice D; Evans RM; Gu L; Thornton P; Weston DJ Tree Physiol; 2012 Jun; 32(6):799-813. PubMed ID: 22210530 [TBL] [Abstract][Full Text] [Related]
16. Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology. Tyree MC; Seiler JR; Maier CA; Johnsen KH Tree Physiol; 2009 Sep; 29(9):1117-31. PubMed ID: 19608598 [TBL] [Abstract][Full Text] [Related]
17. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Matamala R; Gonzàlez-Meler MA; Jastrow JD; Norby RJ; Schlesinger WH Science; 2003 Nov; 302(5649):1385-7. PubMed ID: 14631037 [TBL] [Abstract][Full Text] [Related]
18. Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Mahmood T; Woitke M; Gimmler H; Kaiser WM Planta; 2002 Apr; 214(6):887-94. PubMed ID: 11941465 [TBL] [Abstract][Full Text] [Related]
19. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
20. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability. Watanabe M; Watanabe Y; Kitaoka S; Utsugi H; Kita K; Koike T Tree Physiol; 2011 Sep; 31(9):965-75. PubMed ID: 21813517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]