These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 19819875)
41. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field. Tissue DT; Thomas RB; Strain BR Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747 [TBL] [Abstract][Full Text] [Related]
42. Genetic effects on total phenolics, condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles. Aspinwall MJ; King JS; Booker FL; McKeand SE Tree Physiol; 2011 Aug; 31(8):831-42. PubMed ID: 21831860 [TBL] [Abstract][Full Text] [Related]
43. Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area. Faustino LI; Bulfe NM; Pinazo MA; Monteoliva SE; Graciano C Tree Physiol; 2013 Mar; 33(3):241-51. PubMed ID: 23355634 [TBL] [Abstract][Full Text] [Related]
44. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply. Gruffman L; Palmroth S; Näsholm T Tree Physiol; 2013 Jun; 33(6):590-600. PubMed ID: 23824240 [TBL] [Abstract][Full Text] [Related]
45. Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont. Pangle RE; Seiler J Environ Pollut; 2002; 116 Suppl 1():S85-96. PubMed ID: 11833922 [TBL] [Abstract][Full Text] [Related]
46. Belowground carbon dynamics in loblolly pine (Pinus taeda) immediately following diammonium phosphate fertilization. Gough CM; Seiler JR Tree Physiol; 2004 Jul; 24(7):845-51. PubMed ID: 15123456 [TBL] [Abstract][Full Text] [Related]
47. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide. Springer CJ; DeLucia EH; Thomas RB Tree Physiol; 2005 Apr; 25(4):385-94. PubMed ID: 15687087 [TBL] [Abstract][Full Text] [Related]
48. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration. Barnes AD Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155 [TBL] [Abstract][Full Text] [Related]
49. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO(2). Thomas RB; Lewis JD; Strain BR Tree Physiol; 1994; 14(7_9):947-960. PubMed ID: 14967661 [TBL] [Abstract][Full Text] [Related]
50. The response of coarse root biomass to long-term CO Maier CA; Johnsen KH; Anderson PH; Palmroth S; Kim D; McCarthy HR; Oren R Glob Chang Biol; 2022 Feb; 28(4):1458-1476. PubMed ID: 34783402 [TBL] [Abstract][Full Text] [Related]
51. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Jackson RB; Cook CW; Pippen JS; Palmer SM Ecology; 2009 Dec; 90(12):3352-66. PubMed ID: 20120805 [TBL] [Abstract][Full Text] [Related]
52. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Dieleman WI; Luyssaert S; Rey A; de Angelis P; Barton CV; Broadmeadow MS; Broadmeadow SB; Chigwerewe KS; Crookshanks M; Dufrêne E; Jarvis PG; Kasurinen A; Kellomäki S; Le Dantec V; Liberloo M; Marek M; Medlyn B; Pokorný R; Scarascia-Mugnozza G; Temperton VM; Tingey D; Urban O; Ceulemans R; Janssens IA Plant Cell Environ; 2010 Dec; 33(12):2001-11. PubMed ID: 20573048 [TBL] [Abstract][Full Text] [Related]
53. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO(2), temperature and nitrogen. King JS; Thomas RB; Strain BR Tree Physiol; 1996 Jul; 16(7):635-42. PubMed ID: 14871701 [TBL] [Abstract][Full Text] [Related]
54. Root and soil respiration responses to ozone in Pinus taeda L. seedlings*†. Edwards NT New Phytol; 1991 Jun; 118(2):315-321. PubMed ID: 33874182 [TBL] [Abstract][Full Text] [Related]
55. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO(2) enrichment. Norby RJ; O'Neill EG; Hood WG; Luxmoore RJ Tree Physiol; 1987 Sep; 3(3):203-10. PubMed ID: 14975813 [TBL] [Abstract][Full Text] [Related]
56. Increased leaf area index and efficiency drive enhanced production under elevated atmospheric [CO Palmroth S; Kim D; Maier CA; Medvigy D; Walker AP; Oren R Glob Chang Biol; 2024 Feb; 30(2):e17190. PubMed ID: 38403855 [TBL] [Abstract][Full Text] [Related]
57. Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: effects of nitrogen supply and source. Causin HF; Tremmel DC; Rufty TW; Reynolds JF Am J Bot; 2004 Apr; 91(4):565-72. PubMed ID: 21653412 [TBL] [Abstract][Full Text] [Related]
58. Elevated CO(2) concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE. Crous KY; Walters MB; Ellsworth DS Tree Physiol; 2008 Apr; 28(4):607-14. PubMed ID: 18244946 [TBL] [Abstract][Full Text] [Related]
59. Responses of loblolly pine, sweetgum and crab grass roots to localized increases in nitrogen in two watering regimes. Ludovici KH; Morris LA Tree Physiol; 1996; 16(11_12):933-939. PubMed ID: 14871786 [TBL] [Abstract][Full Text] [Related]
60. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]