These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19820087)

  • 1. A typhus group-specific protease defies reductive evolution in rickettsiae.
    Ammerman NC; Gillespie JJ; Neuwald AF; Sobral BW; Azad AF
    J Bacteriol; 2009 Dec; 191(24):7609-13. PubMed ID: 19820087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmids and rickettsial evolution: insight from Rickettsia felis.
    Gillespie JJ; Beier MS; Rahman MS; Ammerman NC; Shallom JM; Purkayastha A; Sobral BS; Azad AF
    PLoS One; 2007 Mar; 2(3):e266. PubMed ID: 17342200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and sequencing of the gene encoding the candidate HtrA of Rickettsia typhi.
    Kim JH; Hahn MJ
    Microbiol Immunol; 2000; 44(4):275-8. PubMed ID: 10832972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spotted fever group and typhus group rickettsioses in humans, South Korea.
    Choi YJ; Jang WJ; Kim JH; Ryu JS; Lee SH; Park KH; Paik HS; Koh YS; Choi MS; Kim IS
    Emerg Infect Dis; 2005 Feb; 11(2):237-244. PubMed ID: 15752441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes.
    Eichler J
    J Mol Evol; 2002 Mar; 54(3):411-5. PubMed ID: 11847567
    [No Abstract]   [Full Text] [Related]  

  • 6. Common themes and variations in serine protease autotransporters.
    Yen YT; Kostakioti M; Henderson IR; Stathopoulos C
    Trends Microbiol; 2008 Aug; 16(8):370-9. PubMed ID: 18595714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the spotted fever group rickettsiae detected from Haemaphysalis longicornis in Korea.
    Lee JH; Park HS; Jung KD; Jang WJ; Koh SE; Kang SS; Lee IY; Lee WJ; Kim BJ; Kook YH; Park KH; Lee SH
    Microbiol Immunol; 2003; 47(4):301-4. PubMed ID: 12801068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers.
    Koonin EV; Makarova KS; Rogozin IB; Davidovic L; Letellier MC; Pellegrini L
    Genome Biol; 2003; 4(3):R19. PubMed ID: 12620104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The HtrA family of proteases: implications for protein composition and cell fate.
    Clausen T; Southan C; Ehrmann M
    Mol Cell; 2002 Sep; 10(3):443-55. PubMed ID: 12408815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular detection of various rickettsiae in mites (acari: trombiculidae) in southern Jeolla Province, Korea.
    Choi YJ; Lee EM; Park JM; Lee KM; Han SH; Kim JK; Lee SH; Song HJ; Choi MS; Kim IS; Park KH; Jang WJ
    Microbiol Immunol; 2007; 51(3):307-12. PubMed ID: 17380050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins.
    Aravind L; Koonin EV
    Proteins; 2002 Mar; 46(4):355-67. PubMed ID: 11835511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates.
    Endo Y; Takahashi M; Nakao M; Saiga H; Sekine H; Matsushita M; Nonaka M; Fujita T
    J Immunol; 1998 Nov; 161(9):4924-30. PubMed ID: 9794427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of resistance to erythromycin in the genus Rickettsia by mutations in L22 ribosomal protein.
    Rolain JM; Raoult D
    J Antimicrob Chemother; 2005 Aug; 56(2):396-8. PubMed ID: 15996971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution, classification, domain architectures and evolution of prolyl oligopeptidases in prokaryotic lineages.
    Kaushik S; Sowdhamini R
    BMC Genomics; 2014 Nov; 15(1):985. PubMed ID: 25407321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for detecting rickettsiae and diagnosing rickettsial diseases.
    Luce-Fedrow A; Mullins K; Kostik AP; St John HK; Jiang J; Richards AL
    Future Microbiol; 2015; 10(4):537-64. PubMed ID: 25865193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico characterization of alkaline proteases from different species of Aspergillus.
    Morya VK; Yadav S; Kim EK; Yadav D
    Appl Biochem Biotechnol; 2012 Jan; 166(1):243-57. PubMed ID: 22072140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the paralogous hap and iga genes in Haemophilus influenzae: evidence for a conserved hap pseudogene associated with microcolony formation in the recently diverged Haemophilus aegyptius and H. influenzae biogroup aegyptius.
    Kilian M; Poulsen K; Lomholt H
    Mol Microbiol; 2002 Dec; 46(5):1367-80. PubMed ID: 12453222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis.
    Weller SJ; Baldridge GD; Munderloh UG; Noda H; Simser J; Kurtti TJ
    J Clin Microbiol; 1998 May; 36(5):1305-17. PubMed ID: 9574696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity.
    Szabo R; Netzel-Arnett S; Hobson JP; Antalis TM; Bugge TH
    Biochem J; 2005 Aug; 390(Pt 1):231-42. PubMed ID: 15853774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life.
    Gillespie JJ; Williams K; Shukla M; Snyder EE; Nordberg EK; Ceraul SM; Dharmanolla C; Rainey D; Soneja J; Shallom JM; Vishnubhat ND; Wattam R; Purkayastha A; Czar M; Crasta O; Setubal JC; Azad AF; Sobral BS
    PLoS One; 2008; 3(4):e2018. PubMed ID: 19194535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.