These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 19820187)
21. Transformation by T-DNA integration causes highly sterile phenotype independent of transgenes in Arabidopsis thaliana. Ge X; Wang H; Cao K Plant Cell Rep; 2008 Aug; 27(8):1341-8. PubMed ID: 18521611 [TBL] [Abstract][Full Text] [Related]
22. Improvement of Soybean Chen L; Cai Y; Liu X; Yao W; Guo C; Sun S; Wu C; Jiang B; Han T; Hou W Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301169 [TBL] [Abstract][Full Text] [Related]
23. AGROBEST: A Highly Efficient Agrobacterium-Mediated Transient Expression System in Arabidopsis Seedlings. Wu HY; Lai EM Methods Mol Biol; 2022; 2379():113-123. PubMed ID: 35188659 [TBL] [Abstract][Full Text] [Related]
24. Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Zhu Y; Nam J; Carpita NC; Matthysse AG; Gelvin SB Plant Physiol; 2003 Nov; 133(3):1000-10. PubMed ID: 14612582 [TBL] [Abstract][Full Text] [Related]
25. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Chabaud M; de Carvalho-Niebel F; Barker DG Plant Cell Rep; 2003 Aug; 22(1):46-51. PubMed ID: 12827434 [TBL] [Abstract][Full Text] [Related]
26. Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Huang FC; Fu BJ; Liu YT; Chang YR; Chi SF; Chien PR; Huang SC; Hwang HH Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495267 [No Abstract] [Full Text] [Related]
27. Arabidopsis NahG Plants as a Suitable and Efficient System for Transient Expression using Agrobacterium tumefaciens. Rosas-Díaz T; Cana-Quijada P; Amorim-Silva V; Botella MA; Lozano-Durán R; Bejarano ER Mol Plant; 2017 Feb; 10(2):353-356. PubMed ID: 27867105 [No Abstract] [Full Text] [Related]
28. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Travella S; Ross SM; Harden J; Everett C; Snape JW; Harwood WA Plant Cell Rep; 2005 Mar; 23(12):780-9. PubMed ID: 15761662 [TBL] [Abstract][Full Text] [Related]
29. [T-DNA integration patterns in transgenic plants mediated by Agrobacterium tumefaciens]. Yang L; Fu FL; Fu FL; Li WC Yi Chuan; 2011 Dec; 33(12):1327-34. PubMed ID: 22207378 [TBL] [Abstract][Full Text] [Related]
30. Agrobacterium tumefaciens-mediated transformation of leek (Allium porrum) and garlic (Allium sativum). Eady C; Davis S; Catanach A; Kenel F; Hunger S Plant Cell Rep; 2005 Jun; 24(4):209-15. PubMed ID: 15789208 [TBL] [Abstract][Full Text] [Related]
31. Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Oltmanns H; Frame B; Lee LY; Johnson S; Li B; Wang K; Gelvin SB Plant Physiol; 2010 Mar; 152(3):1158-66. PubMed ID: 20023148 [TBL] [Abstract][Full Text] [Related]
32. Transient Transformation of A. thaliana Seedlings by Vacuum Infiltration. Bernat-Silvestre C; De Sousa Vieira V; Sánchez-Simarro J; Aniento F; Marcote MJ Methods Mol Biol; 2021; 2200():147-155. PubMed ID: 33175376 [TBL] [Abstract][Full Text] [Related]
33. 5-Azacytidine promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Zhao Q; Du Y; Wang H; Rogers HJ; Yu C; Liu W; Zhao M; Xie F Plant Physiol Biochem; 2019 Aug; 141():40-50. PubMed ID: 31128562 [TBL] [Abstract][Full Text] [Related]
34. Expression of the Arabidopsis thaliana histone gene AtHTA1 enhances rice transformation efficiency. Zheng YE; He XW; Ying YH; Lu JF; Gelvin SB; Shou HX Mol Plant; 2009 Jul; 2(4):832-837. PubMed ID: 19825658 [TBL] [Abstract][Full Text] [Related]
35. Integration of Agrobacterium T-DNA into the Plant Genome. Gelvin SB Annu Rev Genet; 2017 Nov; 51():195-217. PubMed ID: 28853920 [TBL] [Abstract][Full Text] [Related]
36. Tissue-dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Chaubet-Gigot N; Kapros T; Flenet M; Kahn K; Gigot C; Waterborg JH Plant Mol Biol; 2001 Jan; 45(1):17-30. PubMed ID: 11247603 [TBL] [Abstract][Full Text] [Related]
37. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Park SY; Vaghchhipawala Z; Vasudevan B; Lee LY; Shen Y; Singer K; Waterworth WM; Zhang ZJ; West CE; Mysore KS; Gelvin SB Plant J; 2015 Mar; 81(6):934-46. PubMed ID: 25641249 [TBL] [Abstract][Full Text] [Related]
38. High frequency of single-copy T-DNA transformants produced after floral dip in CRE-expressing Arabidopsis plants. De Paepe A; De Buck S; Nolf J; Depicker A Methods Mol Biol; 2012; 847():317-33. PubMed ID: 22351019 [TBL] [Abstract][Full Text] [Related]
39. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. Ghedira R; De Buck S; Van Ex F; Angenon G; Depicker A Planta; 2013 Dec; 238(6):1025-37. PubMed ID: 23975012 [TBL] [Abstract][Full Text] [Related]
40. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis. Bilichak A; Yao Y; Kovalchuk I Plant Biotechnol J; 2014 Jun; 12(5):590-600. PubMed ID: 24472037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]