BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19820254)

  • 1. Different pathways with distinct properties conduct dilations in the microcirculation in vivo.
    de Wit C
    Cardiovasc Res; 2010 Feb; 85(3):604-13. PubMed ID: 19820254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo.
    Wölfle SE; Schmidt VJ; Hoyer J; Köhler R; de Wit C
    Cardiovasc Res; 2009 Jun; 82(3):476-83. PubMed ID: 19218287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo.
    Siegl D; Koeppen M; Wölfle SE; Pohl U; de Wit C
    Circ Res; 2005 Oct; 97(8):781-8. PubMed ID: 16166558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilations along arterioles.
    Wölfle SE; Schmidt VJ; Hoepfl B; Gebert A; Alcoléa S; Gros D; de Wit C
    Circ Res; 2007 Dec; 101(12):1292-9. PubMed ID: 17932322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crucial importance of the endothelial K+ channel SK3 and connexin40 in arteriolar dilations during skeletal muscle contraction.
    Milkau M; Köhler R; de Wit C
    FASEB J; 2010 Sep; 24(9):3572-9. PubMed ID: 20427707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo.
    Figueroa XF; Paul DL; Simon AM; Goodenough DA; Day KH; Damon DN; Duling BR
    Circ Res; 2003 Apr; 92(7):793-800. PubMed ID: 12637364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of two Cx37-independent conducted vasodilator mechanisms by deletion of Cx40: electrotonic versus regenerative conduction.
    Figueroa XF; Duling BR
    Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H2001-7. PubMed ID: 18790841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice.
    Tallini YN; Brekke JF; Shui B; Doran R; Hwang SM; Nakai J; Salama G; Segal SS; Kotlikoff MI
    Circ Res; 2007 Dec; 101(12):1300-9. PubMed ID: 17932328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles.
    Hoepfl B; Rodenwaldt B; Pohl U; De Wit C
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H996-H1004. PubMed ID: 12181129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of active membrane processes to conducted hyperpolarization in arterioles of hamster cheek pouch.
    Crane GJ; Neild TO; Segal SS
    Microcirculation; 2004; 11(5):425-33. PubMed ID: 15280068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective Cx40 maintains Cx37 expression but intact Cx40 is crucial for conducted dilations irrespective of hypertension.
    Jobs A; Schmidt K; Schmidt VJ; Lübkemeier I; van Veen TA; Kurtz A; Willecke K; de Wit C
    Hypertension; 2012 Dec; 60(6):1422-9. PubMed ID: 23090768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel.
    Si H; Heyken WT; Wölfle SE; Tysiac M; Schubert R; Grgic I; Vilianovich L; Giebing G; Maier T; Gross V; Bader M; de Wit C; Hoyer J; Köhler R
    Circ Res; 2006 Sep; 99(5):537-44. PubMed ID: 16873714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle.
    Looft-Wilson RC; Payne GW; Segal SS
    J Appl Physiol (1985); 2004 Sep; 97(3):1152-8. PubMed ID: 15169746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial mediators and communication through vascular gap junctions.
    de Wit C; Hoepfl B; Wölfle SE
    Biol Chem; 2006 Jan; 387(1):3-9. PubMed ID: 16497158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intact endothelium-dependent dilation and conducted responses in resistance vessels of hypercholesterolemic mice in vivo.
    Wölfle SE; de Wit C
    J Vasc Res; 2005; 42(6):475-82. PubMed ID: 16155363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta.
    Qiu Y; Quilley J
    Med Sci Monit; 2001; 7(6):1129-36. PubMed ID: 11687720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds.
    Clark SG; Fuchs LC
    J Pharmacol Exp Ther; 1997 Sep; 282(3):1473-9. PubMed ID: 9316861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion.
    de Wit C; Roos F; Bolz SS; Pohl U
    Physiol Genomics; 2003 Apr; 13(2):169-77. PubMed ID: 12700362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.