BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 19820712)

  • 21. The upstream 5' splice site remains associated to the transcription machinery during intron synthesis.
    Leader Y; Lev Maor G; Sorek M; Shayevitch R; Hussein M; Hameiri O; Tammer L; Zonszain J; Keydar I; Hollander D; Meshorer E; Ast G
    Nat Commun; 2021 Jul; 12(1):4545. PubMed ID: 34315864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue-specific splicing of the herpes simplex virus type 1 latency-associated transcript (LAT) intron in LAT transgenic mice.
    Gussow AM; Giordani NV; Tran RK; Imai Y; Kwiatkowski DL; Rall GF; Margolis TP; Bloom DC
    J Virol; 2006 Oct; 80(19):9414-23. PubMed ID: 16973547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the importance of being co-transcriptional.
    Neugebauer KM
    J Cell Sci; 2002 Oct; 115(Pt 20):3865-71. PubMed ID: 12244124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How introns enhance gene expression.
    Shaul O
    Int J Biochem Cell Biol; 2017 Oct; 91(Pt B):145-155. PubMed ID: 28673892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The splicing of U12-type introns can be a rate-limiting step in gene expression.
    Patel AA; McCarthy M; Steitz JA
    EMBO J; 2002 Jul; 21(14):3804-15. PubMed ID: 12110592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing.
    Saldi T; Riemondy K; Erickson B; Bentley DL
    Mol Cell; 2021 Apr; 81(8):1789-1801.e5. PubMed ID: 33631106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model in vitro system for co-transcriptional splicing.
    Yu Y; Das R; Folco EG; Reed R
    Nucleic Acids Res; 2010 Nov; 38(21):7570-8. PubMed ID: 20631007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.
    Soboleva TA; Parker BJ; Nekrasov M; Hart-Smith G; Tay YJ; Tng WQ; Wilkins M; Ryan D; Tremethick DJ
    PLoS Genet; 2017 Feb; 13(2):e1006633. PubMed ID: 28234895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intron-independent association of splicing factors with active genes.
    Jolly C; Vourc'h C; Robert-Nicoud M; Morimoto RI
    J Cell Biol; 1999 Jun; 145(6):1133-43. PubMed ID: 10366587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.
    Aslanzadeh V; Huang Y; Sanguinetti G; Beggs JD
    Genome Res; 2018 Feb; 28(2):203-213. PubMed ID: 29254943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid.
    Manji SS; Ng KW; Martin TJ; Zhou H
    J Cell Physiol; 1998 Jul; 176(1):1-9. PubMed ID: 9618139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Arabidopsis U11/U12-65K is an indispensible component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development.
    Jung HJ; Kang H
    Plant J; 2014 Jun; 78(5):799-810. PubMed ID: 24606192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive database and evolutionary dynamics of U12-type introns.
    Moyer DC; Larue GE; Hershberger CE; Roy SW; Padgett RA
    Nucleic Acids Res; 2020 Jul; 48(13):7066-7078. PubMed ID: 32484558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.
    Listerman I; Sapra AK; Neugebauer KM
    Nat Struct Mol Biol; 2006 Sep; 13(9):815-22. PubMed ID: 16921380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.
    Wallace EWJ; Beggs JD
    RNA; 2017 May; 23(5):601-610. PubMed ID: 28153948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA.
    Kessler O; Jiang Y; Chasin LA
    Mol Cell Biol; 1993 Oct; 13(10):6211-22. PubMed ID: 8413221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing.
    Fong N; Ohman M; Bentley DL
    Nat Struct Mol Biol; 2009 Sep; 16(9):916-22. PubMed ID: 19701200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CDK12/13 promote splicing of proximal introns by enhancing the interaction between RNA polymerase II and the splicing factor SF3B1.
    Panzeri V; Pieraccioli M; Cesari E; de la Grange P; Sette C
    Nucleic Acids Res; 2023 Jun; 51(11):5512-5526. PubMed ID: 37026485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The temporal landscape of recursive splicing during Pol II transcription elongation in human cells.
    Zhang XO; Fu Y; Mou H; Xue W; Weng Z
    PLoS Genet; 2018 Aug; 14(8):e1007579. PubMed ID: 30148885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.