These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19821014)

  • 21. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.
    Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S
    Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles.
    Pant HR; Pandeya DR; Nam KT; Baek WI; Hong ST; Kim HY
    J Hazard Mater; 2011 May; 189(1-2):465-71. PubMed ID: 21429663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct printing of silver nanoparticles by an agarose stamp on planar and patterned substrates.
    Kao YC; Hong FC
    Nanotechnology; 2011 May; 22(18):185303. PubMed ID: 21415468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle lithography-based patterning of polyelectrolyte template films and their application in fabrication of gold/silver nanoparticle assembly.
    Ruan W; Zhou T; Hui G; Wang Y; Chong X; Wang X; Song W; Han X; Zhao B
    J Colloid Interface Sci; 2014 Oct; 432():65-9. PubMed ID: 25080385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors.
    Zhang X; Wang H; Su Z
    Langmuir; 2012 Nov; 28(44):15705-12. PubMed ID: 23075212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films.
    Kim YH; Lee YM; Lee JY; Ko MJ; Yoo PJ
    ACS Nano; 2012 Feb; 6(2):1082-93. PubMed ID: 22236171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid visual detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) based on hydrophobic effect.
    Zheng LQ; Yu XD; Xu JJ; Chen HY
    Talanta; 2014 Jan; 118():90-5. PubMed ID: 24274274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wavelength dependent specific plasmon resonance coupling of single silver nanoparticles with EGFP.
    Lee KJ; Huang T; Nallathamby PD; Xu XH
    Nanoscale; 2015 Nov; 7(42):17623-30. PubMed ID: 26455449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis.
    Sivanesan A; Ly HK; Kozuch J; Sezer M; Kuhlmann U; Fischer A; Weidinger IM
    Chem Commun (Camb); 2011 Mar; 47(12):3553-5. PubMed ID: 21321696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced Raman scattering (SERS).
    Sundaram J; Park B; Kwon Y
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5382-90. PubMed ID: 23882767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes.
    Fang M; Chen Z; Wang S; Lu H
    Nanotechnology; 2012 Mar; 23(8):085704. PubMed ID: 22293553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-enhanced immunoassays.
    Gryczynski I; Luchowski R; Matveeva EG; Shtoyko T; Sarkar P; Borejdo J; Akopova I; Gryczynski Z
    Methods Mol Biol; 2012; 875():217-29. PubMed ID: 22573442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence.
    Nooney R; Clifford A; Leguevel X; Stranik O; McDonagh C; Maccraith BD
    Anal Bioanal Chem; 2010 Feb; 396(3):1127-34. PubMed ID: 20012901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers.
    Feng AL; You ML; Tian L; Singamaneni S; Liu M; Duan Z; Lu TJ; Xu F; Lin M
    Sci Rep; 2015 Jan; 5():7779. PubMed ID: 25586238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability and sedimentation of silver nanoparticles in the presence of monovalent, divalent and trivalent electrolyte solutions.
    Chen SF; Zhang H
    Water Sci Technol; 2014; 70(2):361-6. PubMed ID: 25051485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controllable metal-enhanced fluorescence in organized films and colloidal system.
    Cui Q; He F; Li L; Möhwald H
    Adv Colloid Interface Sci; 2014 May; 207():164-77. PubMed ID: 24182686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition.
    Holmes AM; Lim J; Studier H; Roberts MS
    Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-guided self-assembly of silver nanoparticles on edges of heterogeneous surfaces.
    Ruan W; Wang C; Ji N; Lu Z; Zhou T; Zhao B; Lombardi JR
    Langmuir; 2008 Aug; 24(16):8417-20. PubMed ID: 18656975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New core-shell hyperbranched chitosan-based nanoparticles as optical sensor for ammonia detection.
    El-Sherbiny IM; Hefnawy A; Salih E
    Int J Biol Macromol; 2016 May; 86():782-8. PubMed ID: 26851206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.