These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19821080)

  • 1. Presynaptic and postsynaptic cortical mechanisms of chronic pain.
    Descalzi G; Kim S; Zhuo M
    Mol Neurobiol; 2009 Dec; 40(3):253-9. PubMed ID: 19821080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical plasticity as synaptic mechanism for chronic pain.
    Zhuo M
    J Neural Transm (Vienna); 2020 Apr; 127(4):567-573. PubMed ID: 31493094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRAPPER Selectively Contributes to Spontaneous Release and Presynaptic Long-Term Potentiation in the Anterior Cingulate Cortex.
    Koga K; Yao I; Setou M; Zhuo M
    J Neurosci; 2017 Apr; 37(14):3887-3895. PubMed ID: 28292828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation.
    Nicoll RA; Malenka RC
    Ann N Y Acad Sci; 1999 Apr; 868():515-25. PubMed ID: 10414328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silent synapses in pain-related anterior cingulate cortex.
    Zhuo M
    Mol Pain; 2023; 19():17448069231179011. PubMed ID: 37227022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS; Huang CC
    Br J Pharmacol; 1997 Oct; 122(4):671-81. PubMed ID: 9375963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synaptic model for pain: long-term potentiation in the anterior cingulate cortex.
    Zhuo M
    Mol Cells; 2007 Jun; 23(3):259-71. PubMed ID: 17646700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice.
    Chen T; O'Den G; Song Q; Koga K; Zhang MM; Zhuo M
    Mol Pain; 2014 Oct; 10():65. PubMed ID: 25304256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BDNF is required for the induction of a presynaptic component of the functional conversion of silent synapses.
    Cabezas C; Buño W
    Hippocampus; 2011 Apr; 21(4):374-85. PubMed ID: 20082298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice.
    Liao D; Hessler NA; Malinow R
    Nature; 1995 Jun; 375(6530):400-4. PubMed ID: 7760933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostaglandin Signaling Governs Spike Timing-Dependent Plasticity at Sensory Synapses onto Mouse Spinal Projection Neurons.
    Li J; Serafin E; Baccei ML
    J Neurosci; 2018 Jul; 38(30):6628-6639. PubMed ID: 29934349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex.
    Toyoda H; Zhao MG; Xu H; Wu LJ; Ren M; Zhuo M
    Mol Pain; 2007 Dec; 3():36. PubMed ID: 18053155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent postsynaptic AMPA GluR1 receptor recruitment in the cingulate synaptic potentiation.
    Toyoda H; Wu LJ; Zhao MG; Xu H; Zhuo M
    Dev Neurobiol; 2007 Mar; 67(4):498-509. PubMed ID: 17443804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice.
    Abidin I; Köhler T; Weiler E; Zoidl G; Eysel UT; Lessmann V; Mittmann T
    Eur J Neurosci; 2006 Dec; 24(12):3519-31. PubMed ID: 17229100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N; Gerber U; Ster J
    J Neurosci; 2016 Nov; 36(45):11521-11531. PubMed ID: 27911756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel expression mechanism for synaptic potentiation: alignment of presynaptic release site and postsynaptic receptor.
    Xie X; Liaw JS; Baudry M; Berger TW
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6983-8. PubMed ID: 9192678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions.
    Nieus T; Sola E; Mapelli J; Saftenku E; Rossi P; D'Angelo E
    J Neurophysiol; 2006 Feb; 95(2):686-99. PubMed ID: 16207782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
    Grey KB; Burrell BD
    J Neurophysiol; 2010 May; 103(5):2737-46. PubMed ID: 20457859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity.
    Thiagarajan TC; Lindskog M; Malgaroli A; Tsien RW
    Neuropharmacology; 2007 Jan; 52(1):156-75. PubMed ID: 16949624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex.
    Xu H; Wu LJ; Wang H; Zhang X; Vadakkan KI; Kim SS; Steenland HW; Zhuo M
    J Neurosci; 2008 Jul; 28(29):7445-53. PubMed ID: 18632948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.