These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. Zhang K; Tong M; Gao K; Di Y; Wang P; Zhang C; Wu X; Zheng D J Ind Microbiol Biotechnol; 2015 Feb; 42(2):207-18. PubMed ID: 25475753 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Dong SJ; Lin XH; Li H Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142 [TBL] [Abstract][Full Text] [Related]
6. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Pérez-Torrado R; Matallana E Biotechnol Prog; 2015; 31(1):20-4. PubMed ID: 25219977 [TBL] [Abstract][Full Text] [Related]
7. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
10. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation. Carvalho-Netto OV; Carazzolle MF; Rodrigues A; Bragança WO; Costa GG; Argueso JL; Pereira GA J Biotechnol; 2013 Dec; 168(4):701-9. PubMed ID: 23994268 [TBL] [Abstract][Full Text] [Related]
11. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. Cot M; Loret MO; François J; Benbadis L FEMS Yeast Res; 2007 Jan; 7(1):22-32. PubMed ID: 17005001 [TBL] [Abstract][Full Text] [Related]
12. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
13. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Zaky AS; Greetham D; Tucker GA; Du C Sci Rep; 2018 Aug; 8(1):12127. PubMed ID: 30108287 [TBL] [Abstract][Full Text] [Related]
14. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling. Comelli RN; Seluy LG; Isla MA N Biotechnol; 2016 Dec; 33(6):874-882. PubMed ID: 27702688 [TBL] [Abstract][Full Text] [Related]
15. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
16. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production. Zheng D; Zhang K; Gao K; Liu Z; Zhang X; Li O; Sun J; Zhang X; Du F; Sun P; Qu A; Wu X PLoS One; 2013; 8(12):e85022. PubMed ID: 24376860 [TBL] [Abstract][Full Text] [Related]
17. Effects of genome duplication on phenotypes and industrial applications of Saccharomyces cerevisiae strains. Zhang K; Fang YH; Gao KH; Sui Y; Zheng DQ; Wu XC Appl Microbiol Biotechnol; 2017 Jul; 101(13):5405-5414. PubMed ID: 28429058 [TBL] [Abstract][Full Text] [Related]
18. Ethanol production process driving changes on industrial strains. Nagamatsu ST; Coutouné N; José J; Fiamenghi MB; Pereira GAG; Oliveira JVC; Carazzolle MF FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33417685 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Rossignol T; Dulau L; Julien A; Blondin B Yeast; 2003 Dec; 20(16):1369-85. PubMed ID: 14663829 [TBL] [Abstract][Full Text] [Related]
20. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]