These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 1982160)
1. Experimental brain ischaemia: assessment of injury by magnetic resonance spectroscopy and histology. Anderson ML; Smith DS; Nioka S; Subramanian H; Garcia JH; Halsey JH; Chance B Neurol Res; 1990 Dec; 12(4):195-204. PubMed ID: 1982160 [TBL] [Abstract][Full Text] [Related]
2. In vivo 31phosphorus spectroscopy during transient cerebral ischaemia in the gerbil. Dempsey RJ; Combs DJ; Donaldson DL; Thomas G; Smith C Neurol Res; 1990 Jun; 12(2):106-10. PubMed ID: 1974698 [TBL] [Abstract][Full Text] [Related]
3. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats. Andrews BT; Weinstein PR; Keniry M; Pereira B Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405 [TBL] [Abstract][Full Text] [Related]
4. Reversibility of energy metabolism and intracellular pH after cerebral ischaemia evaluated by 31P-MRS. Saito R; Kawase T; Toya S; Koga K; Miura I Neurol Res; 1992 Dec; 14(5):411-6. PubMed ID: 1362256 [TBL] [Abstract][Full Text] [Related]
5. Myocardial protection with verapamil during ischaemia and reperfusion: dissociation between myocardial salvage and the degree of ATP depletion during ischaemia. Wolfe CL; Donnelly TJ; Sievers R; Parmley WW Cardiovasc Res; 1991 Feb; 25(2):101-9. PubMed ID: 1742760 [TBL] [Abstract][Full Text] [Related]
6. Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts. Elliott AC; Smith GL; Eisner DA; Allen DG J Physiol; 1992 Aug; 454():467-90. PubMed ID: 1474498 [TBL] [Abstract][Full Text] [Related]
7. High energy phosphate metabolism in experimental permanent focal cerebral ischemia: an in vivo 31P magnetic resonance spectroscopy study. Germano IM; Pitts LH; Berry I; De Armond SJ J Cereb Blood Flow Metab; 1988 Feb; 8(1):24-31. PubMed ID: 3339105 [TBL] [Abstract][Full Text] [Related]
8. In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Camacho SA; Lanzer P; Toy BJ; Gober J; Valenza M; Botvinick EH; Weiner MW Am Heart J; 1988 Sep; 116(3):701-8. PubMed ID: 3414485 [TBL] [Abstract][Full Text] [Related]
9. Use of magnetic resonance spectroscopy in the evaluation of skin flap circulation. Klein HW; Gourley IM Ann Plast Surg; 1988 Jun; 20(6):547-51. PubMed ID: 3389706 [TBL] [Abstract][Full Text] [Related]
10. Beneficial effects of L-canavanine, a selective inhibitor of inducible nitric oxide synthase, on lactate metabolism and muscle high energy phosphates during endotoxic shock in rats. Levy B; Valtier M; de Chillou C; Bollaert PE; Cane D; Mallie JP Shock; 1999 Feb; 11(2):98-103. PubMed ID: 10030795 [TBL] [Abstract][Full Text] [Related]
11. Metabolic and functional consequences of successive no-flow and sustained low-flow ischaemia; a 31P MRS study in rat hearts. van Binsbergen XA; van Emous JG; Ferrari R; van Echteld CJ; Ruigrok TJ J Mol Cell Cardiol; 1996 Dec; 28(12):2373-81. PubMed ID: 9004154 [TBL] [Abstract][Full Text] [Related]
12. Metabolic heterogeneity in brain tissue during incomplete ischemia and reperfusion. Nioka S; Smith D; Chance B; Lockard S NMR Biomed; 1990 Dec; 3(6):239-47. PubMed ID: 2092739 [TBL] [Abstract][Full Text] [Related]
13. A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. Thulborn KR; du Boulay GH; Duchen LW; Radda G J Cereb Blood Flow Metab; 1982 Sep; 2(3):299-306. PubMed ID: 7096457 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of endothelin-1-induced intrastriatal lesions within the juvenile and adult rat brain using MRI and 31P MRS. Saggu R Transl Stroke Res; 2013 Jun; 4(3):351-67. PubMed ID: 24323302 [TBL] [Abstract][Full Text] [Related]
15. Quantitation of high energy phosphate compounds and metabolic significance in the developing dog brain. Nioka S; Chance B; Lockard SB; Dobson GP Neurol Res; 1991 Mar; 13(1):33-8. PubMed ID: 1675445 [TBL] [Abstract][Full Text] [Related]
16. Cerebral metabolite dynamics during temporary complete ischemia in rats monitored by time-shared 1H and 31P NMR spectroscopy. Chang LH; Shirane R; Weinstein PR; James TL Magn Reson Med; 1990 Jan; 13(1):6-13. PubMed ID: 2319935 [TBL] [Abstract][Full Text] [Related]
17. Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia-ischaemia in the developing brain. Blumberg RM; Cady EB; Wigglesworth JS; McKenzie JE; Edwards AD Exp Brain Res; 1997 Jan; 113(1):130-7. PubMed ID: 9028781 [TBL] [Abstract][Full Text] [Related]
18. NMR-visible ATP and Pi in normoxic and reperfused rat hearts: a quantitative study. Humphrey SM; Garlick PB Am J Physiol; 1991 Jan; 260(1 Pt 2):H6-12. PubMed ID: 1992810 [TBL] [Abstract][Full Text] [Related]
19. 31P-MRS of quadriceps reveals quantitative differences between sprinters and long-distance runners. Bernús G; González de Suso JM; Alonso J; Martin PA; Prat JA; Arús C Med Sci Sports Exerc; 1993 Apr; 25(4):479-84. PubMed ID: 8479302 [TBL] [Abstract][Full Text] [Related]
20. Noninvasive measurement of muscle high-energy phosphates and glycogen concentrations in elite soccer players by 31P- and 13C-MRS. Rico-Sanz J; Zehnder M; Buchli R; Kühne G; Boutellier U Med Sci Sports Exerc; 1999 Nov; 31(11):1580-6. PubMed ID: 10589860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]