BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19821729)

  • 1. Dispersal and movement mechanisms of Phytophthora capsici sporangia.
    Granke LL; Windstam ST; Hoch HC; Smart CD; Hausbeck MK
    Phytopathology; 2009 Nov; 99(11):1258-64. PubMed ID: 19821729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Dynamics of Phytophthora Blight on Bell Pepper in Relation to the Mechanisms of Dispersal of Primary Inoculum of Phytophthora capsici in Soil.
    Sujkowski LS; Parra GR; Gumpertz ML; Ristaino JB
    Phytopathology; 2000 Feb; 90(2):148-56. PubMed ID: 18944603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Pseudoperonospora cubensis Sporangia in Commercial Cucurbit Fields in Michigan.
    Granke LL; Hausbeck MK
    Plant Dis; 2011 Nov; 95(11):1392-1400. PubMed ID: 30731781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the Rate of Release and Escape of Phytophthora infestans Sporangia from a Potato Canopy.
    Aylor DE; Fry WE; Mayton H; Andrade-Piedra JL
    Phytopathology; 2001 Dec; 91(12):1189-96. PubMed ID: 18943334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici.
    Sun WX; Jia YJ; Feng BZ; O'Neill NR; Zhu XP; Xie BY; Zhang XG
    Genesis; 2009 Aug; 47(8):535-44. PubMed ID: 19422018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of meteorological conditions on spore plumes.
    Burch M; Levetin E
    Int J Biometeorol; 2002 Aug; 46(3):107-17. PubMed ID: 12194003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans.
    Skelsey P; Rossing WA; Kessel GJ; van der Werf W
    Phytopathology; 2009 Jul; 99(7):887-95. PubMed ID: 19522587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature and bacteria on sporulation of Phytophthora alni in river water.
    Chandelier A; Abras S; Laurent F; Debruxelles N; Cavelier M
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):873-80. PubMed ID: 17390834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant inbred line differential identifies race-specific resistance to phytophthora root rot in Capsicum annuum.
    Sy O; Steiner R; Bosland PW
    Phytopathology; 2008 Aug; 98(8):867-70. PubMed ID: 18943204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection.
    Zhu C; Yang X; Lv R; Li Z; Ding X; Tyler BM; Zhang X
    Mol Plant Pathol; 2016 Apr; 17(3):369-87. PubMed ID: 26095317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Environment on Atmospheric Concentrations of Peronospora antirrhini Sporangia in Field-Grown Snapdragon.
    Byrne JM; Hausbeck MK; Sconyers LE
    Plant Dis; 2005 Oct; 89(10):1060-1066. PubMed ID: 30791273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural changes and a second mode of flagellar degeneration during ageing of Phytophthora palmivora sporangia.
    Hemmes DE; Hohl HR
    J Cell Sci; 1975 Dec; 19(3):563-77. PubMed ID: 1206048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asexual Reproduction of Phytophthora capsici as Affected by Extracts from Agricultural and Nonagricultural Soils.
    Sanogo S
    Phytopathology; 2007 Jul; 97(7):873-8. PubMed ID: 18943937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici.
    Lamour KH; Mudge J; Gobena D; Hurtado-Gonzales OP; Schmutz J; Kuo A; Miller NA; Rice BJ; Raffaele S; Cano LM; Bharti AK; Donahoo RS; Finley S; Huitema E; Hulvey J; Platt D; Salamov A; Savidor A; Sharma R; Stam R; Storey D; Thines M; Win J; Haas BJ; Dinwiddie DL; Jenkins J; Knight JR; Affourtit JP; Han CS; Chertkov O; Lindquist EA; Detter C; Grigoriev IV; Kamoun S; Kingsmore SF
    Mol Plant Microbe Interact; 2012 Oct; 25(10):1350-60. PubMed ID: 22712506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of an anti-fungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii.
    Joo GJ
    Biotechnol Lett; 2005 Feb; 27(3):201-5. PubMed ID: 15717130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the vital stain FUN-1 indicates viability of Phytophthora capsici propagules and can be used to predict maximum zoospore production.
    Lewis Ivey ML; Miller SA
    Mycologia; 2014; 106(2):362-7. PubMed ID: 24782503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An LRR receptor kinase regulates growth, development and pathogenesis in Phytophthora capsici.
    Safdar A; Li Q; Shen D; Chen L; He F; Wang R; Zhang M; Mafurah JJ; Khan SA; Dou D
    Microbiol Res; 2017 May; 198():8-15. PubMed ID: 28285663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sporangia Production Over Time by Phytophthora ramorum on Rhododendron 'Cunningham's White' After Placement at Different Relative Humidities.
    Tooley PW; Browning M
    Phytopathology; 2018 Jun; 108(6):721-729. PubMed ID: 29671704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans.
    Judelson HS; Roberts S
    Eukaryot Cell; 2002 Oct; 1(5):687-95. PubMed ID: 12455688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Phytophthora capsici from Michigan Surface Irrigation Water.
    Gevens AJ; Donahoo RS; Lamour KH; Hausbeck MK
    Phytopathology; 2007 Apr; 97(4):421-8. PubMed ID: 18943282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.