These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19821841)

  • 1. Loss of photic entrainment at low illuminances in rats with acute photoreceptor degeneration.
    Boudard DL; Mendoza J; Hicks D
    Eur J Neurosci; 2009 Oct; 30(8):1527-36. PubMed ID: 19821841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute photoreceptor degeneration down-regulates melanopsin expression in adult rat retina.
    Wan J; Zheng H; Hu BY; Xiao HL; She ZJ; Chen ZL; Zhou GM
    Neurosci Lett; 2006 May; 400(1-2):48-52. PubMed ID: 16580133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanopsin is required for non-image-forming photic responses in blind mice.
    Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB
    Science; 2003 Jul; 301(5632):525-7. PubMed ID: 12829787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.
    Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA
    Science; 2002 Dec; 298(5601):2213-6. PubMed ID: 12481141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonvisual ocular photoreception in the mammal.
    Van Gelder RN
    Methods Enzymol; 2005; 393():746-55. PubMed ID: 15817322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells.
    Güler AD; Altimus CM; Ecker JL; Hattar S
    Cold Spring Harb Symp Quant Biol; 2007; 72():509-15. PubMed ID: 18522518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei.
    Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D
    Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium.
    Peirson SN; Bovee-Geurts PH; Lupi D; Jeffery G; DeGrip WJ; Foster RG
    Brain Res Mol Brain Res; 2004 Apr; 123(1-2):132-5. PubMed ID: 15046875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paradoxical opsin expressing cells in the inner retina that are augmented following retinal degeneration.
    Semo M; Vugler AA; Jeffery G
    Eur J Neurosci; 2007 Apr; 25(8):2296-306. PubMed ID: 17445228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanopsin regulates visual processing in the mouse retina.
    Barnard AR; Hattar S; Hankins MW; Lucas RJ
    Curr Biol; 2006 Feb; 16(4):389-95. PubMed ID: 16488873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanopsin changes in neonatal albino rat independent of rods and cones.
    Hannibal J; Georg B; Fahrenkrug J
    Neuroreport; 2007 Jan; 18(1):81-5. PubMed ID: 17259866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically photosensitive retinal ganglion cells.
    Kawasaki A; Kardon RH
    J Neuroophthalmol; 2007 Sep; 27(3):195-204. PubMed ID: 17895821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of melanopsin in circadian responses to light.
    Ruby NF; Brennan TJ; Xie X; Cao V; Franken P; Heller HC; O'Hara BF
    Science; 2002 Dec; 298(5601):2211-3. PubMed ID: 12481140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical evidence of a melanopsin cone in human retina.
    Dkhissi-Benyahya O; Rieux C; Hut RA; Cooper HM
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1636-41. PubMed ID: 16565403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanopsin and other novel mammalian opsins.
    Kumbalasiri T; Provencio I
    Exp Eye Res; 2005 Oct; 81(4):368-75. PubMed ID: 16005867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased late night response to light controls the circadian pacemaker in a nocturnal primate.
    Perret M; Gomez D; Barbosa A; Aujard F; Théry M
    J Biol Rhythms; 2010 Jun; 25(3):186-96. PubMed ID: 20484690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide rescues N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats through preservation of nuclear factor-kappaB activity.
    Miki K; Uehara N; Shikata N; Matsumura M; Tsubura A
    Exp Eye Res; 2007 Feb; 84(2):285-92. PubMed ID: 17137578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.