BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19822146)

  • 1. Biosynthesis of long-chain polyamines by crenarchaeal polyamine synthases from Hyperthermus butylicus and Pyrobaculum aerophilum.
    Knott JM
    FEBS Lett; 2009 Nov; 583(21):3519-24. PubMed ID: 19822146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Bräsen C; Schönheit P
    Arch Microbiol; 2004 Oct; 182(4):277-87. PubMed ID: 15340786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine.
    Knott JM; Römer P; Sumper M
    FEBS Lett; 2007 Jun; 581(16):3081-6. PubMed ID: 17560575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Branched-Chain Polyamines in Hyperthermophiles.
    Hidese R; Fukuda W; Niitsu M; Fujiwara S
    Methods Mol Biol; 2018; 1694():81-94. PubMed ID: 29080158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular machines encoded by bacterially-derived multi-domain gene fusions that potentially synthesize, N-methylate and transfer long chain polyamines in diatoms.
    Michael AJ
    FEBS Lett; 2011 Sep; 585(17):2627-34. PubMed ID: 21827754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.
    Reher M; Gebhard S; Schönheit P
    FEMS Microbiol Lett; 2007 Aug; 273(2):196-205. PubMed ID: 17559573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine.
    Hidese R; Tse KM; Kimura S; Mizohata E; Fujita J; Horai Y; Umezawa N; Higuchi T; Niitsu M; Oshima T; Imanaka T; Inoue T; Fujiwara S
    FEBS J; 2017 Nov; 284(21):3684-3701. PubMed ID: 28881427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a hyperthermostable dimeric archaeal Rubisco from Hyperthermus butylicus.
    Bundela R; Keown J; Watkin S; Pearce FG
    Acta Crystallogr D Struct Biol; 2019 Jun; 75(Pt 6):536-544. PubMed ID: 31205016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Bräsen C; Urbanke C; Schönheit P
    FEBS Lett; 2005 Jan; 579(2):477-82. PubMed ID: 15642362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary diversification in polyamine biosynthesis.
    Minguet EG; Vera-Sirera F; Marina A; Carbonell J; Blázquez MA
    Mol Biol Evol; 2008 Oct; 25(10):2119-28. PubMed ID: 18653732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad nucleotide cofactor specificity of DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus and its evolutionary significance.
    Kim JH; Lee KK; Sun Y; Seo GJ; Cho SS; Kwon SH; Kwon ST
    Extremophiles; 2013 May; 17(3):515-22. PubMed ID: 23546841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of tertiary and quaternary branched polyamines in thermophilic archaebacteria.
    Hamana K; Hamana H; Niitsu M; Samejima K; Sakane T; Yokota A
    Microbios; 1994; 79(319):109-19. PubMed ID: 7968661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations about N-aminopropyl transferases probably involved in biomineralization.
    Romer P; Faltermeier A; Mertins V; Gedrange T; Mai R; Proff P
    J Physiol Pharmacol; 2008 Nov; 59 Suppl 5():27-37. PubMed ID: 19075322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C.
    Brügger K; Chen L; Stark M; Zibat A; Redder P; Ruepp A; Awayez M; She Q; Garrett RA; Klenk HP
    Archaea; 2007 May; 2(2):127-35. PubMed ID: 17350933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C-terminal flexible region of branched-chain polyamine synthase facilitates substrate specificity and catalysis.
    Hidese R; Toyoda M; Yoshino KI; Fukuda W; Wihardja GA; Kimura S; Fujita J; Niitsu M; Oshima T; Imanaka T; Mizohata E; Fujiwara S
    FEBS J; 2019 Oct; 286(19):3926-3940. PubMed ID: 31162806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel acetylated form of branched-chain polyamine from a hyperthermophilic archaeon Thermococcus kodakarensis.
    Hidese R; Im KH; Kobayashi M; Niitsu M; Furuchi T; Fujiwara S
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1845-1849. PubMed ID: 28678603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring polyamine biosynthetic diversity through comparative and functional genomics.
    Michael AJ
    Methods Mol Biol; 2011; 720():39-50. PubMed ID: 21318865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine function in archaea and bacteria.
    Michael AJ
    J Biol Chem; 2018 Nov; 293(48):18693-18701. PubMed ID: 30254075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular polyamines of the acidophilic, thermophilic and thermoacidophilic archaebacteria, Acidilobus, Ferroplasma, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodiscus and Vulcanisaeta.
    Hamana K; Tanaka T; Hosoya R; Niitsu M; Itoh T
    J Gen Appl Microbiol; 2003 Oct; 49(5):287-93. PubMed ID: 14673752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.