These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 19822322)
1. The role of charged surfactants in the thermal and structural properties of lyotropic liquid crystalline mesophases of [Zn(H2O)6](NO3)2-C(n)EO(m)-H2O. Albayrak C; Soylu AM; Dag O J Colloid Interface Sci; 2010 Jan; 341(1):109-16. PubMed ID: 19822322 [TBL] [Abstract][Full Text] [Related]
2. Lyotropic liquid-crystalline mesophases of [Zn(H2O)6](NO3)2-C12EO10-CTAB-H2O and [Zn(H2O)6](NO3)2-C12EO10-SDS-H2O systems. Albayrak C; Soylu AM; Dag O Langmuir; 2008 Oct; 24(19):10592-5. PubMed ID: 18729333 [TBL] [Abstract][Full Text] [Related]
3. Liquid crystalline mesophases of pluronics (L64, P65, and P123) and transition metal nitrate salts ([M(H2O)6](NO3)2). Demirörs AF; Eser BE; Dag O Langmuir; 2005 Apr; 21(9):4156-62. PubMed ID: 15835988 [TBL] [Abstract][Full Text] [Related]
4. Origin of lyotropic liquid crystalline mesophase formation and liquid crystalline to mesostructured solid transformation in the metal nitrate salt-surfactant systems. Albayrak C; Özkan N; Dag Ö Langmuir; 2011 Feb; 27(3):870-3. PubMed ID: 20958051 [TBL] [Abstract][Full Text] [Related]
5. Lyotropic liquid crystalline phases formed in ternary mixtures of 1-cetyl-3-methylimidazolium bromide/p-xylene/water: a SAXS, POM, and rheology study. Zhang J; Dong B; Zheng L; Li N; Li X J Colloid Interface Sci; 2008 May; 321(1):159-65. PubMed ID: 18294647 [TBL] [Abstract][Full Text] [Related]
6. Phase behavior of an extended surfactant in water and a detailed characterization of the concentrated phases. Klaus A; Tiddy GJ; Touraud D; Schramm A; Stühler G; Kunz W Langmuir; 2010 Nov; 26(22):16871-83. PubMed ID: 20929210 [TBL] [Abstract][Full Text] [Related]
7. Phase separation in liquid crystalline mesophases of [Co(H2O)6]X2:P65 Systems (X = NO3-, Cl-, or ClO4-). Albayrak C; Gülten G; Dag O Langmuir; 2007 Jan; 23(2):855-60. PubMed ID: 17209644 [TBL] [Abstract][Full Text] [Related]
8. Two routes to vesicle formation: metal-ligand complexation and ionic interactions. Wang J; Song A; Jia X; Hao J; Liu W; Hoffmann H J Phys Chem B; 2005 Jun; 109(22):11126-34. PubMed ID: 16852357 [TBL] [Abstract][Full Text] [Related]
9. Liquid crystalline phases of the amphiphilic ionic liquid N-hexadecyl-N-methylpyrrolidinium bromide formed in the ionic liquid ethylammonium nitrate and in water. Zhao M; Gao Y; Zheng L J Phys Chem B; 2010 Sep; 114(35):11382-9. PubMed ID: 20712384 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and thermotropic liquid crystalline properties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group. Zhou T; Zhao J J Colloid Interface Sci; 2009 Mar; 331(2):476-83. PubMed ID: 19101677 [TBL] [Abstract][Full Text] [Related]
11. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems. Albayrak C; Barım G; Dag Ö J Colloid Interface Sci; 2014 Nov; 433():26-33. PubMed ID: 25112909 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and thermotropic liquid crystalline properties of zwitterionic gemini surfactants containing a quaternary ammonium and a sulfate group. Zhou T; Zhao J J Colloid Interface Sci; 2009 Oct; 338(1):156-62. PubMed ID: 19564026 [TBL] [Abstract][Full Text] [Related]
14. Role of Water in the Lyotropic Liquid Crystalline Mesophase of Lithium Salts and Non-ionic Surfactants. Yılmaz Topuzlu E; Okur HI; Ulgut B; Dag Ö Langmuir; 2021 Dec; 37(49):14443-14453. PubMed ID: 34856801 [TBL] [Abstract][Full Text] [Related]
15. Highly conducting lyotropic liquid crystalline mesophases of pluronics (P65, P85, P103, and P123) and hydrated lithium salts (LiCl and LiNO₃). Barım G; Albayrak C; Yılmaz E; Dag Ö Langmuir; 2014 Jun; 30(23):6938-45. PubMed ID: 24874818 [TBL] [Abstract][Full Text] [Related]
16. Lyotropic Liquid Crystalline Mesophases of Lithium Dihydrogen Phosphate and 10-Lauryl Ether Stabilized with Water or Phosphoric Acid. Topuzlu EY; Ulgut B; Dag Ö Chempluschem; 2023 Jan; 88(1):e202200447. PubMed ID: 36631291 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au). Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023 [TBL] [Abstract][Full Text] [Related]
18. Water/supercritical CO2 microemulsions with mixed surfactant systems. Sagisaka M; Koike D; Mashimo Y; Yoda S; Takebayashi Y; Furuya T; Yoshizawa A; Sakai H; Abe M; Otake K Langmuir; 2008 Sep; 24(18):10116-22. PubMed ID: 18715020 [TBL] [Abstract][Full Text] [Related]
19. Tetranuclear copper(II) complexes bridged by alpha-D-glucose-1-phosphate and incorporation of sugar acids through the Cu4 core structural changes. Kato M; Sah AK; Tanase T; Mikuriya M Inorg Chem; 2006 Aug; 45(17):6646-60. PubMed ID: 16903719 [TBL] [Abstract][Full Text] [Related]
20. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure. Marotta E; Paradisi C; Scorrano G J Mass Spectrom; 2004 Jul; 39(7):791-801. PubMed ID: 15282758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]