BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19822390)

  • 41. Spatio-Temporal Flow and Wall Shear Stress Mapping Based on Incoherent Ensemble-Correlation of Ultrafast Contrast Enhanced Ultrasound Images.
    Leow CH; Tang MX
    Ultrasound Med Biol; 2018 Jan; 44(1):134-152. PubMed ID: 29037843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Vascular imaging with contrast-enhanced sonography for experimental use].
    Krix M; Kauczor HU; Delorme S
    Radiologe; 2005 Jun; 45(6):552-9. PubMed ID: 15809842
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution functional vascular assessment with ultrasound.
    Yeh CK; Ferrara KW; Kruse DE
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1263-75. PubMed ID: 15493694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation.
    Davidson BP; Hodovan J; Belcik JT; Moccetti F; Xie A; Ammi AY; Lindner JR
    J Am Soc Echocardiogr; 2017 May; 30(5):503-510.e1. PubMed ID: 28238588
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High Frame Rate Contrast-Enhanced Ultrasound Imaging for Slow Lymphatic Flow: Influence of Ultrasound Pressure and Flow Rate on Bubble Disruption and Image Persistence.
    Zhu J; Lin S; Leow CH; Rowland EM; Riemer K; Harput S; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2019 Sep; 45(9):2456-2470. PubMed ID: 31279503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.
    Mukdadi O; Shandas R
    Biomed Sci Instrum; 2004; 40():364-70. PubMed ID: 15133985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets.
    Gao H; Claus P; Amzulescu MS; Stankovic I; D'hooge J; Voigt JU
    Eur Heart J Cardiovasc Imaging; 2012 Jun; 13(6):490-9. PubMed ID: 22173934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flow-induced disturbances in balanced steady-state free precession images: means to reduce or exploit them.
    Lagerstrand KM; Plewes DB; Vikhoff-Baaz B; Forssell-Aronsson E
    Magn Reson Med; 2009 Apr; 61(4):893-8. PubMed ID: 19191282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the design of a capillary flow phantom for the evaluation of ultrasound contrast agents at very low flow velocities.
    Veltmann C; Lohmaier S; Schlosser T; Shai S; Ehlgen A; Pohl C; Becher H; Tiemann K
    Ultrasound Med Biol; 2002 May; 28(5):625-34. PubMed ID: 12079699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a Fluid Dynamic Model for Quantitative Contrast-Enhanced Ultrasound Imaging.
    Denis de Senneville B; Novell A; Arthuis C; Mendes V; Dujardin PA; Patat F; Bouakaz A; Escoffre JM; Perrotin F
    IEEE Trans Med Imaging; 2018 Feb; 37(2):372-383. PubMed ID: 28858788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.
    Li Q; Matula TJ; Tu J; Guo X; Zhang D
    Phys Med Biol; 2013 Feb; 58(4):985-98. PubMed ID: 23339902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resolving the lateral component of blood flow velocity based on ultrasound speckle size change with scan direction and speed.
    Xu T; Bashford GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():491-4. PubMed ID: 19963464
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasound low-velocity flow estimations using cross-correlation and decorrelation: a thread phantom study.
    Pan TT; Chiang HK
    Med Eng Phys; 2007 Jun; 29(5):602-14. PubMed ID: 16931098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Micro-ultrasound biofluid imaging and multi-component velocity measurement with micro echo particle image velocimetry technique.
    Qian M; Yan L; Niu L; Jin Q; Ling T; Chen Y; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():451-4. PubMed ID: 19964936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of Flow Volume in the Presence of Reverse Flow with Ultrasound Speckle Decorrelation.
    Zhou X; Zhou X; Leow CH; Tang MX
    Ultrasound Med Biol; 2019 Nov; 45(11):3056-3066. PubMed ID: 31378548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Echo PIV for flow field measurements in vivo.
    Kim HB; Hertzberg JR; Shandas R
    Biomed Sci Instrum; 2004; 40():357-63. PubMed ID: 15133984
    [No Abstract]   [Full Text] [Related]  

  • 57. Advantages in using multi-frequency driving ultrasound for optimizing echo particle image velocimetry techniques.
    Zheng H; Mukdadi O; Hertzberg J; Shandas R
    Biomed Sci Instrum; 2004; 40():371-6. PubMed ID: 15133986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative real-time blood flow estimation with intravascular ultrasound in the presence of in-plane flow.
    de Ana FJ; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1952-61. PubMed ID: 16422407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating 2-D vector velocities using multidimensional spectrum analysis.
    Oddershede N; Løvstakken L; Torp H; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1744-54. PubMed ID: 18986918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Velocity field estimation in transcranial small vessel using super-resolution ultrasound imaging velocimetry.
    Liang M; Liu J; Guo C; Zong Y; Wan M
    Ultrasonics; 2023 Jul; 132():107016. PubMed ID: 37094521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.