These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19822706)
1. Relative contributions of active mediated transport and passive diffusion of fluoroquinolones with various lipophilicities in a Calu-3 lung epithelial cell model. Brillault J; De Castro WV; Couet W Antimicrob Agents Chemother; 2010 Jan; 54(1):543-5. PubMed ID: 19822706 [TBL] [Abstract][Full Text] [Related]
2. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Brillault J; De Castro WV; Harnois T; Kitzis A; Olivier JC; Couet W Antimicrob Agents Chemother; 2009 Apr; 53(4):1457-62. PubMed ID: 19188390 [TBL] [Abstract][Full Text] [Related]
3. Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3). Florea BI; van der Sandt IC; Schrier SM; Kooiman K; Deryckere K; de Boer AG; Junginger HE; Borchard G Br J Pharmacol; 2001 Dec; 134(7):1555-63. PubMed ID: 11724763 [TBL] [Abstract][Full Text] [Related]
4. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells. Togami K; Chono S; Morimoto K Pharmazie; 2012 May; 67(5):389-93. PubMed ID: 22764569 [TBL] [Abstract][Full Text] [Related]
5. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. Mathia NR; Timoszyk J; Stetsko PI; Megill JR; Smith RL; Wall DA J Drug Target; 2002 Feb; 10(1):31-40. PubMed ID: 11996084 [TBL] [Abstract][Full Text] [Related]
6. Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model. Nurbaeti SN; Olivier JC; Adier C; Marchand S; Couet W; Brillault J J Pharm Sci; 2018 Apr; 107(4):1178-1184. PubMed ID: 29221992 [TBL] [Abstract][Full Text] [Related]
7. Ciprofloxacin is actively transported across bronchial lung epithelial cells using a Calu-3 air interface cell model. Ong HX; Traini D; Bebawy M; Young PM Antimicrob Agents Chemother; 2013 Jun; 57(6):2535-40. PubMed ID: 23507281 [TBL] [Abstract][Full Text] [Related]
9. Interaction of gatifloxacin with efflux transporters: a possible mechanism for drug resistance. Kwatra D; Vadlapatla RK; Vadlapudi AD; Pal D; Mitra AK Int J Pharm; 2010 Aug; 395(1-2):114-21. PubMed ID: 20573570 [TBL] [Abstract][Full Text] [Related]
10. Transport characteristics of fexofenadine in the Caco-2 cell model. Petri N; Tannergren C; Rungstad D; Lennernäs H Pharm Res; 2004 Aug; 21(8):1398-404. PubMed ID: 15359574 [TBL] [Abstract][Full Text] [Related]
12. Distribution characteristics of orally administered olamufloxacin, a newly synthesized fluoroquinolone antibacterial, in lung epithelial lining fluid and alveolar macrophage in rats. Sun J; Deguchi Y; Tauchi Y; He Z; Cheng G; Morimoto K Eur J Pharm Biopharm; 2006 Oct; 64(2):238-45. PubMed ID: 16875808 [TBL] [Abstract][Full Text] [Related]
13. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers. Min KA; Rosania GR; Kim CK; Shin MC Arch Pharm Res; 2016 Mar; 39(3):359-69. PubMed ID: 26746641 [TBL] [Abstract][Full Text] [Related]
14. Antibiotic transport across bronchial epithelial cells: Effects of molecular weight, LogP and apparent permeability. Stigliani M; Haghi M; Russo P; Young PM; Traini D Eur J Pharm Sci; 2016 Feb; 83():45-51. PubMed ID: 26690046 [TBL] [Abstract][Full Text] [Related]
15. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. Dahan A; Sabit H; Amidon GL AAPS J; 2009 Jun; 11(2):205-13. PubMed ID: 19319690 [TBL] [Abstract][Full Text] [Related]
16. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Cavet ME; West M; Simmons NL Antimicrob Agents Chemother; 1997 Dec; 41(12):2693-8. PubMed ID: 9420040 [TBL] [Abstract][Full Text] [Related]
17. Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. Yan M; Sahin O; Lin J; Zhang Q J Antimicrob Chemother; 2006 Dec; 58(6):1154-9. PubMed ID: 17023497 [TBL] [Abstract][Full Text] [Related]
18. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Grès MC; Julian B; Bourrié M; Meunier V; Roques C; Berger M; Boulenc X; Berger Y; Fabre G Pharm Res; 1998 May; 15(5):726-33. PubMed ID: 9619781 [TBL] [Abstract][Full Text] [Related]
19. Contribution of efflux pumps in fluroquinolone resistance in multi-drug resistant nosocomial isolates of Pseudomanas aeruginosa from a tertiary referral hospital in north east India. Choudhury D; Talukdar AD; Maurya AP; Choudhury MD; Dhar Chanda D; Chakravarty A; Bhattacharjee A Indian J Med Microbiol; 2015; 33(1):84-6. PubMed ID: 25560007 [TBL] [Abstract][Full Text] [Related]
20. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers. Schutte ME; Freidig AP; van de Sandt JJ; Alink GM; Rietjens IM; Groten JP Toxicol Appl Pharmacol; 2006 Dec; 217(2):204-15. PubMed ID: 16997339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]