BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 19822937)

  • 1. Differential plasma protein binding to metal oxide nanoparticles.
    Deng ZJ; Mortimer G; Schiller T; Musumeci A; Martin D; Minchin RF
    Nanotechnology; 2009 Nov; 20(45):455101. PubMed ID: 19822937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials.
    Dutta D; Sundaram SK; Teeguarden JG; Riley BJ; Fifield LS; Jacobs JM; Addleman SR; Kaysen GA; Moudgil BM; Weber TJ
    Toxicol Sci; 2007 Nov; 100(1):303-15. PubMed ID: 17709331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of serum proteins bound to industrial nanomaterials.
    Ruh H; Kühl B; Brenner-Weiss G; Hopf C; Diabaté S; Weiss C
    Toxicol Lett; 2012 Jan; 208(1):41-50. PubMed ID: 22001751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells.
    Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y
    Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.
    Tantra R; Tompkins J; Quincey P
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):275-81. PubMed ID: 19775871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of metal oxide nanoparticles with lung surfactant protein A.
    Schulze C; Schaefer UF; Ruge CA; Wohlleben W; Lehr CM
    Eur J Pharm Biopharm; 2011 Apr; 77(3):376-83. PubMed ID: 21056657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and physico-chemical characterisation of nanoparticles.
    Schulze Isfort C; Rochnia M
    Toxicol Lett; 2009 May; 186(3):148-51. PubMed ID: 19114092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles.
    Wang LS; Xiao MW; Huang XJ; Wu YD
    J Hazard Mater; 2009 Jan; 161(1):49-54. PubMed ID: 18456402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix.
    Moleski R; Leontidis E; Krumeich F
    J Colloid Interface Sci; 2006 Oct; 302(1):246-53. PubMed ID: 16890234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles.
    Monopoli MP; Walczyk D; Campbell A; Elia G; Lynch I; Bombelli FB; Dawson KA
    J Am Chem Soc; 2011 Mar; 133(8):2525-34. PubMed ID: 21288025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century.
    Lynch I; Cedervall T; Lundqvist M; Cabaleiro-Lago C; Linse S; Dawson KA
    Adv Colloid Interface Sci; 2007 Oct; 134-135():167-74. PubMed ID: 17574200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of human arylamine N-acetyltransferase 1 with different nanomaterials.
    Deng ZJ; Butcher NJ; Mortimer GM; Jia Z; Monteiro MJ; Martin DJ; Minchin RF
    Drug Metab Dispos; 2014 Mar; 42(3):377-83. PubMed ID: 24346836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of metal oxide nanoparticles in aqueous solutions.
    Tso CP; Zhung CM; Shih YH; Tseng YM; Wu SC; Doong RA
    Water Sci Technol; 2010; 61(1):127-33. PubMed ID: 20057098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.
    Singh P; Nanda A
    Int J Cosmet Sci; 2014 Jun; 36(3):273-83. PubMed ID: 24575878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of plasma proteins facilitated by enrichment on particulate surfaces: analysis by two-dimensional electrophoresis and N-terminal microsequencing.
    Lück M; Schröder W; Harnisch S; Thode K; Blunk T; Paulke BR; Kresse M; Müller RH
    Electrophoresis; 1997 Dec; 18(15):2961-7. PubMed ID: 9504836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis.
    Tenzer S; Docter D; Rosfa S; Wlodarski A; Kuharev J; Rekik A; Knauer SK; Bantz C; Nawroth T; Bier C; Sirirattanapan J; Mann W; Treuel L; Zellner R; Maskos M; Schild H; Stauber RH
    ACS Nano; 2011 Sep; 5(9):7155-67. PubMed ID: 21866933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions.
    Schaefer J; Schulze C; Marxer EE; Schaefer UF; Wohlleben W; Bakowsky U; Lehr CM
    ACS Nano; 2012 Jun; 6(6):4603-14. PubMed ID: 22577818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and biological properties of polysaccharide-coated titania nanoparticles: the key role of proteins.
    Pasqui D; Golini L; Giovampaola CD; Atrei A; Barbucci R
    Biomacromolecules; 2011 Apr; 12(4):1243-9. PubMed ID: 21401022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting.
    Göppert TM; Müller RH
    Int J Pharm; 2005 Sep; 302(1-2):172-86. PubMed ID: 16098695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles.
    Cozzoli PD; Fanizza E; Curri ML; Laub D; Agostiano A
    Chem Commun (Camb); 2005 Feb; (7):942-4. PubMed ID: 15700089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.