These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 19822947)

  • 1. Identification of patients with congestive heart failure using different neural networks approaches.
    Elfadil N; Hossen A
    Technol Health Care; 2009; 17(4):305-21. PubMed ID: 19822947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique.
    Choi S; Jiang Z
    Comput Biol Med; 2010 Jan; 40(1):8-20. PubMed ID: 19926081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical signal characterization for congestive heart failure patient's classification.
    Al Ghunaimi B; Hossen A; Hassan MO
    Technol Health Care; 2006; 14(1):29-45. PubMed ID: 16556962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A soft decision algorithm for obstructive sleep apnea patient classification based on fast estimation of wavelet entropy of RRI data.
    Hossen A
    Technol Health Care; 2005; 13(3):151-65. PubMed ID: 15990418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for sleep-wake identification using actigraphy: a comparative study and new results.
    Tilmanne J; Urbain J; Kothare MV; Wouwer AV; Kothare SV
    J Sleep Res; 2009 Mar; 18(1):85-98. PubMed ID: 19250177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.
    Ubeyli ED
    Comput Methods Programs Biomed; 2009 Mar; 93(3):313-21. PubMed ID: 19084286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.
    Kupas K; Ultsch A; Klebe G
    Proteins; 2008 May; 71(3):1288-306. PubMed ID: 18041748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic ECG classification based on neural networks.
    Bortolan G; Willems JL
    J Electrocardiol; 1993; 26 Suppl():75-9. PubMed ID: 8189152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved classification of medical data using abductive network committees trained on different feature subsets.
    Abdel-Aal RE
    Comput Methods Programs Biomed; 2005 Nov; 80(2):141-53. PubMed ID: 16169631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research on EEG classification with evolving cascade neural networks].
    Hao D; Ruan X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):262-5. PubMed ID: 16706343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients' speech signal with unilateral vocal fold paralysis.
    Behroozmand R; Almasganj F
    Comput Biol Med; 2007 Apr; 37(4):474-85. PubMed ID: 17034780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling toxicity by using supervised kohonen neural networks.
    Mazzatorta P; Vracko M; Jezierska A; Benfenati E
    J Chem Inf Comput Sci; 2003; 43(2):485-92. PubMed ID: 12653512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma.
    Wang X; Yang J; Jensen R; Liu X
    Comput Methods Programs Biomed; 2006 Aug; 83(2):147-56. PubMed ID: 16893588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An expert diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics.
    Beksaç MS; Eskiizmirliler S; Cakar AN; Erkmen AM; Dağdeviren A; Lundsteen C
    Technol Health Care; 1996 Mar; 3(4):217-29. PubMed ID: 8705397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal component analysis and artificial neural network analysis of oral tissue fluorescence spectra: classification of normal premalignant and malignant pathological conditions.
    Nayak GS; Kamath S; Pai KM; Sarkar A; Ray S; Kurien J; D'Almeida L; Krishnanand BR; Santhosh C; Kartha VB; Mahato KK
    Biopolymers; 2006 Jun; 82(2):152-66. PubMed ID: 16470821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Artificial neural networks for the identification of infrared spectra of Ilex Kudingcha].
    Pang TT; Yao JB; Du LM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1336-9. PubMed ID: 17944408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals.
    Ubeyli ED
    Neural Netw; 2008 Nov; 21(9):1410-7. PubMed ID: 18815008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial neural networks compared to factor analysis for low-dimensional classification of high-dimensional body fat topography data of healthy and diabetic subjects.
    Tafeit E; Möller R; Sudi K; Reibnegger G
    Comput Biomed Res; 2000 Oct; 33(5):365-74. PubMed ID: 11017727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network classification of otoneurological data and its visualization.
    Siermala M; Juhola M; Kentala E
    Comput Biol Med; 2008 Aug; 38(8):858-66. PubMed ID: 18572156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.