These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 19822991)
1. Immunohistochemical analysis of osteoconductivity of beta-tricalcium phosphate and carbonate apatite applied in femoral and parietal bone defects in rats. Takeuchi H; Nagayama M; Imaizumi Y; Tsukahara T; Nakazawa J; Kusaka Y; Ohtomo K Dent Mater J; 2009 Sep; 28(5):595-601. PubMed ID: 19822991 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
3. Aspirin modified strontium-doped β-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Tao ZS; Zhou WS; Xu HG; Yang M Biomed Pharmacother; 2020 Dec; 132():110911. PubMed ID: 33125972 [TBL] [Abstract][Full Text] [Related]
4. Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate. Shirasu N; Ueno T; Hirata Y; Hirata A; Kagawa T; Kanou M; Sawaki M; Wakimoto M; Ota A; Imura H; Matsumura T; Yamada T; Yamachika E; Sano K Acta Histochem; 2010 May; 112(3):270-7. PubMed ID: 19403161 [TBL] [Abstract][Full Text] [Related]
5. [Experimental study of the effect of new bone formation on new type artificial bone composed of bioactive ceramics]. Zhu M; Zeng Y; Sun T; Peng Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):174-7. PubMed ID: 15828468 [TBL] [Abstract][Full Text] [Related]
6. Beta-tricalcium phosphate exerts osteoconductivity through alpha2beta1 integrin and down-stream MAPK/ERK signaling pathway. Lu Z; Zreiqat H Biochem Biophys Res Commun; 2010 Apr; 394(2):323-9. PubMed ID: 20206607 [TBL] [Abstract][Full Text] [Related]
7. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration. Zhang J; Sun L; Luo X; Barbieri D; de Bruijn JD; van Blitterswijk CA; Moroni L; Yuan H J Tissue Eng Regen Med; 2017 Nov; 11(11):3273-3283. PubMed ID: 28176491 [TBL] [Abstract][Full Text] [Related]
8. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
9. Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. Strazic Geljic I; Melis N; Boukhechba F; Schaub S; Mellier C; Janvier P; Laugier JP; Bouler JM; Verron E; Scimeca JC J Tissue Eng Regen Med; 2018 Feb; 12(2):e854-e866. PubMed ID: 28079305 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study. Kunert-Keil C; Scholz F; Gedrange T; Gredes T Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994 [TBL] [Abstract][Full Text] [Related]
11. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects. Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890 [TBL] [Abstract][Full Text] [Related]
12. An evaluation of hydroxyapatite and biphasic calcium phosphate in combination with Pluronic F127 and BMP on bone repair. Zhou AJ; Peel SA; Clokie CM J Craniofac Surg; 2007 Nov; 18(6):1264-75. PubMed ID: 17993867 [TBL] [Abstract][Full Text] [Related]
13. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. Fujita R; Yokoyama A; Kawasaki T; Kohgo T J Oral Maxillofac Surg; 2003 Sep; 61(9):1045-53. PubMed ID: 12966480 [TBL] [Abstract][Full Text] [Related]
14. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate. Bizenjima T; Takeuchi T; Seshima F; Saito A Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831 [TBL] [Abstract][Full Text] [Related]
15. Connexin 43 expression at an early stage in dog mandibles by β-TCP. Hayashi M; Takahashi T; Kawaguchi K; Watanabe T; Zhao J; Abiko Y Dent Mater J; 2011; 30(1):58-65. PubMed ID: 21282887 [TBL] [Abstract][Full Text] [Related]
16. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722 [TBL] [Abstract][Full Text] [Related]
17. The Efficacy of Recombinant Platelet-Derived Growth Factor on Beta-Tricalcium Phosphate to Regenerate Femoral Critical Sized Segmental Defects: Longitudinal Badwelan M; Alkindi M; Ramalingam S; Nooh N; Al Hezaimi K J Invest Surg; 2020 Jun; 33(5):476-488. PubMed ID: 30430878 [No Abstract] [Full Text] [Related]
18. Bone formation using β-tricalcium phosphate/carboxymethyl-chitin composite scaffold in rat calvarial defects. Taniyama K; Shirakata Y; Yoshimoto T; Takeuchi N; Yoshihara Y; Noguchi K Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Dec; 116(6):e450-6. PubMed ID: 22901650 [TBL] [Abstract][Full Text] [Related]
19. Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate). Arbez B; Libouban H Morphologie; 2017 Sep; 101(334):154-163. PubMed ID: 28506709 [TBL] [Abstract][Full Text] [Related]
20. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Takahashi Y; Yamamoto M; Tabata Y Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]