These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19823248)

  • 1. Absolute frequency measurement of the molecular iodine hyperfine components near 560 nm with a solid-state laser source.
    Zhang J; Lu ZH; Wang LJ
    Appl Opt; 2009 Oct; 48(29):5629-35. PubMed ID: 19823248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise frequency measurements of iodine hyperfine transitions at 671 nm.
    Huang YC; Chen HC; Chen SE; Shy JT; Wang LB
    Appl Opt; 2013 Mar; 52(7):1448-52. PubMed ID: 23458797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute frequency measurement of molecular iodine hyperfine transitions at 647  nm.
    Huang YC; Guan YC; Suen TH; Shy JT; Wang LB
    Appl Opt; 2018 Mar; 57(9):2102-2106. PubMed ID: 29603999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact iodine-stabilized laser operating at 531 nm with stability at the 10(-12) level and using a coin-sized laser module.
    Kobayashi T; Akamatsu D; Hosaka K; Inaba H; Okubo S; Tanabe T; Yasuda M; Onae A; Hong FL
    Opt Express; 2015 Aug; 23(16):20749-59. PubMed ID: 26367927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Dense Grid of Reference Iodine Lines for Optical Frequency Calibration in the Range 595-655 nm.
    Xu SC; van Dierendonck R ; Hogervorst W; Ubachs W
    J Mol Spectrosc; 2000 Jun; 201(2):256-266. PubMed ID: 10814488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism.
    Tillman KA; Thapa R; Knabe K; Wu S; Lim J; Washburn BR; Corwin KL
    Appl Opt; 2009 Dec; 48(36):6980-9. PubMed ID: 20029601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm.
    Hong FL; Inaba H; Hosaka K; Yasuda M; Onae A
    Opt Express; 2009 Feb; 17(3):1652-9. PubMed ID: 19188995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock.
    Benedick A; Tyurikov D; Gubin M; Shewmon R; Chuang I; Kärtner FX
    Opt Lett; 2009 Jul; 34(14):2168-70. PubMed ID: 19823537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diode laser based studies of the UV photolysis of molecular iodine.
    Hancock G; Richmond G; Ritchie GA; Taylor S
    Phys Chem Chem Phys; 2009 Aug; 11(30):6415-23. PubMed ID: 19809673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies on the hyperfine structures of I2 absorption line with third harmonic frequency stabilization in Nd:YVO4-KTP ring laser].
    Zhang H; Peng YX; Zang EJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 May; 25(5):641-3. PubMed ID: 16128051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability, Reproducibility, and Absolute Wavelength of a 633-nm He-Ne Laser Stabilized to an Iodine Hyperfine Component.
    Hanes GR; Baird KM; Deremigis J
    Appl Opt; 1973 Jul; 12(7):1600-5. PubMed ID: 20125571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance iodine fiber frequency standard.
    Lurie A; Baynes FN; Anstie JD; Light PS; Benabid F; Stace TM; Luiten AN
    Opt Lett; 2011 Dec; 36(24):4776-8. PubMed ID: 22179880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable extended-cavity diode laser stabilized on iodine at lambda = 633 nm.
    Lazar J; Cíp O; Jedlicka P
    Appl Opt; 2000 Jun; 39(18):3085-8. PubMed ID: 18345236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description, performance, and wavelengths of iodine stabilized lasers.
    Schweitzer WG; Kessler EG; Deslattes RD; Layer HP; Whetstone JR
    Appl Opt; 1973 Dec; 12(12):2927-38. PubMed ID: 20125899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental line parameters of the b1 Sigma(g)+ <-- X3 Sigma(g)- band of oxygen isotopologues at 760 nm using frequency-stabilized cavity ring-down spectroscopy.
    Robichaud DJ; Yeung LY; Long DA; Okumura M; Havey DK; Hodges JT; Miller CE; Brown LR
    J Phys Chem A; 2009 Nov; 113(47):13089-99. PubMed ID: 19585967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb.
    Diddams SA; Hollberg L; Mbele V
    Nature; 2007 Feb; 445(7128):627-30. PubMed ID: 17287805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).
    Li CH; Benedick AJ; Fendel P; Glenday AG; Kärtner FX; Phillips DF; Sasselov D; Szentgyorgyi A; Walsworth RL
    Nature; 2008 Apr; 452(7187):610-2. PubMed ID: 18385734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Measurements of HBr Transitions in the First Overtone Band Using Tunable Diode Lasers.
    Chou SI; Baer DS; Hanson RK
    J Mol Spectrosc; 2000 Mar; 200(1):138-142. PubMed ID: 10662585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iodine-stabilized single-frequency green InGaN diode laser.
    Chen YH; Lin WC; Shy JT; Chui HC
    Opt Lett; 2018 Jan; 43(1):126-129. PubMed ID: 29328213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.