These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19823490)

  • 1. Stimulated resonance Raman scattering of Rhodamine 6G.
    Kwok AS; Chang RK
    Opt Lett; 1993 Oct; 18(20):1703-5. PubMed ID: 19823490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence
studies on live endothelial cells.
    Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M
    Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory.
    Jensen L; Schatz GC
    J Phys Chem A; 2006 May; 110(18):5973-7. PubMed ID: 16671663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of stimulated Raman scattering from microdroplets by seeding with nanometer-sized latex particles.
    Xie JG; Ruekgauer TE; Armstrong RL; Pinnick RG
    Opt Lett; 1993 Mar; 18(5):340-2. PubMed ID: 19802129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced hyper-Raman scattering of Rhodamine 6G isotopologues: Assignment of lower vibrational frequencies.
    Olson JE; Hu Z; Best MD; Jensen L; Camden JP
    J Chem Phys; 2021 Jan; 154(3):034703. PubMed ID: 33499640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects.
    Guthmuller J; Champagne B
    J Phys Chem A; 2008 Apr; 112(14):3215-23. PubMed ID: 18327928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Narrow-band random Raman lasing from Rhodamine 6G assisted by cascaded stimulated Raman scattering effect.
    Hosseini MS; Yazdani E; Sajad B
    Sci Rep; 2021 Nov; 11(1):21747. PubMed ID: 34741105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering.
    Kwok AS; Chang RK
    Opt Lett; 1992 Sep; 17(18):1262-4. PubMed ID: 19798151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in steady-state and time-resolved background luminescence from surface-enhanced resonance Raman scattering-active single Ag nanoaggregates.
    Itoh T; Kikkawa Y; Biju V; Ishikawa M; Ikehata A; Ozaki Y
    J Phys Chem B; 2006 Nov; 110(43):21536-44. PubMed ID: 17064104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface.
    Sennaroglu A; Kiraz A; Dündar MA; Kurt A; Demirel AL
    Opt Lett; 2007 Aug; 32(15):2197-9. PubMed ID: 17671582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-order distributed feedback dye laser effect in reflection pumping geometry.
    Chen F; Gindre D; Nunzi JM
    Opt Lett; 2007 Apr; 32(7):805-7. PubMed ID: 17339943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplified light scattering and emission of silver and silver core-silica shell particles.
    Siiman O; Jitianu A; Bele M; Grom P; Matijević E
    J Colloid Interface Sci; 2007 May; 309(1):8-20. PubMed ID: 17346732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic random lasing in silica aerogel doped with rhodamine 6G.
    Wetter NU; Ramos de Miranda A; Pecoraro É; Lima Ribeiro SJ; Jimenez-Villar E
    RSC Adv; 2018 Aug; 8(52):29678-29685. PubMed ID: 35547269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on sodium lauryl sulfate (SDS) induced fluorescence enhancement of rhodamine 6G in water solution excited by 532 nm laser].
    He YH; Cheng J; Zuo HY; Yang JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 May; 25(5):648-50. PubMed ID: 16128053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enhanced Resonance Hyper-Raman Scattering Elucidates the Molecular Orientation of Rhodamine 6G on Silver Colloids.
    Turley HK; Hu Z; Jensen L; Camden JP
    J Phys Chem Lett; 2017 Apr; 8(8):1819-1823. PubMed ID: 28383922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule.
    Dieringer JA; Wustholz KL; Masiello DJ; Camden JP; Kleinman SL; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2009 Jan; 131(2):849-54. PubMed ID: 19140802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible random lasers with tunable lasing emissions.
    Lee YJ; Chou CY; Yang ZP; Nguyen TBH; Yao YC; Yeh TW; Tsai MT; Kuo HC
    Nanoscale; 2018 Jun; 10(22):10403-10411. PubMed ID: 29671442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)?
    Ghosh S; Roy A; Banik D; Kundu N; Kuchlyan J; Dhir A; Sarkar N
    Langmuir; 2015 Mar; 31(8):2310-20. PubMed ID: 25643899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing two-photon properties of molecules: large non-Condon effects dominate the resonance hyper-Raman scattering of rhodamine 6G.
    Milojevich CB; Silverstein DW; Jensen L; Camden JP
    J Am Chem Soc; 2011 Sep; 133(37):14590-2. PubMed ID: 21851085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Polarization Anisotropy in Microdroplets.
    Zhou Z; Yan X; Lai YH; Zare RN
    J Phys Chem Lett; 2018 Jun; 9(11):2928-2932. PubMed ID: 29763551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.