BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19823718)

  • 1. Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves.
    Hennig M; Neumann J; Wixforth A; Rädler JO; Schneider MF
    Lab Chip; 2009 Nov; 9(21):3050-3. PubMed ID: 19823718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves.
    Hennig M; Wolff M; Neumann J; Wixforth A; Schneider MF; Rädler JO
    Langmuir; 2011 Dec; 27(24):14721-5. PubMed ID: 22077281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis.
    Funakoshi K; Suzuki H; Takeuchi S
    Anal Chem; 2006 Dec; 78(24):8169-74. PubMed ID: 17165804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled agitation during hybridization: surface acoustic waves are shaking up microarray technology.
    Wixforth A
    Methods Mol Med; 2005; 114():121-45. PubMed ID: 16156101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.
    Suzuki H; Le Pioufle B; Takeuchi S
    Biomed Microdevices; 2009 Feb; 11(1):17-22. PubMed ID: 18584329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks.
    Sarles SA; Leo DJ
    Lab Chip; 2010 Mar; 10(6):710-7. PubMed ID: 20221558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates.
    Taylor JD; Phillips KS; Cheng Q
    Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturised technologies for the development of artificial lipid bilayer systems.
    Zagnoni M
    Lab Chip; 2012 Mar; 12(6):1026-39. PubMed ID: 22301684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerized lipid bilayers on a solid substrate: morphologies and obstruction of lateral diffusion.
    Okazaki T; Inaba T; Tatsu Y; Tero R; Urisu T; Morigaki K
    Langmuir; 2009 Jan; 25(1):345-51. PubMed ID: 19067577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterned composite membranes of polymerized and fluid lipid bilayers.
    Morigaki K; Kiyosue K; Taguchi T
    Langmuir; 2004 Aug; 20(18):7729-35. PubMed ID: 15323525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling for the robust design of layered resonators for ultrasonic particle manipulation.
    Hill M; Townsend RJ; Harris NR
    Ultrasonics; 2008 Nov; 48(6-7):521-8. PubMed ID: 18664398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-step process to reconstitute cell membranes on solid supports.
    Mager MD; Melosh NA
    Langmuir; 2010 Apr; 26(7):4635-8. PubMed ID: 20205459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(dimethylsiloxane)-coated sensor devices for the formation of supported lipid bilayers and the subsequent study of membrane interactions.
    Shahal T; Melzak KA; Lowe CR; Gizeli E
    Langmuir; 2008 Oct; 24(19):11268-75. PubMed ID: 18729340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly(dimethylsiloxane).
    Phillips KS; Cheng Q
    Anal Chem; 2005 Jan; 77(1):327-34. PubMed ID: 15623312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.