These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 19823733)

  • 21. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL; Howell PB; Richards JJ; Erickson JS; Ligler FS
    Lab Chip; 2009 Nov; 9(21):3126-30. PubMed ID: 19823729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment.
    Nguyen NT; Huang X
    Lab Chip; 2005 Nov; 5(11):1320-6. PubMed ID: 16234959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices.
    Yamada M; Kasim V; Nakashima M; Edahiro J; Seki M
    Biotechnol Bioeng; 2004 Nov; 88(4):489-94. PubMed ID: 15459911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional axisymmetric flow-focusing device using stereolithography.
    Morimoto Y; Tan WH; Takeuchi S
    Biomed Microdevices; 2009 Apr; 11(2):369-77. PubMed ID: 19009352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining.
    Kummrow A; Theisen J; Frankowski M; Tuchscheerer A; Yildirim H; Brattke K; Schmidt M; Neukammer J
    Lab Chip; 2009 Apr; 9(7):972-81. PubMed ID: 19294310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V; Groisman A
    Anal Chem; 2006 Jun; 78(11):3765-71. PubMed ID: 16737235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High flow rate microfluidic device for blood plasma separation using a range of temperatures.
    Rodríguez-Villarreal AI; Arundell M; Carmona M; Samitier J
    Lab Chip; 2010 Jan; 10(2):211-9. PubMed ID: 20066249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator.
    Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusion based analysis in a sheath flow microchannel: the sheath flow T-sensor.
    Munson MS; Hawkins KR; Hasenbank MS; Yager P
    Lab Chip; 2005 Aug; 5(8):856-62. PubMed ID: 16027937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional magnetic focusing of superparamagnetic beads for on-chip agglutination assays.
    Afshar R; Moser Y; Lehnert T; Gijs MA
    Anal Chem; 2011 Feb; 83(3):1022-9. PubMed ID: 21214193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-discernment microflow cytometer with microweir structure.
    Fu LM; Tsai CH; Lin CH
    Electrophoresis; 2008 May; 29(9):1874-80. PubMed ID: 18384041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple, robust storage of drops and fluids in a microfluidic device.
    Boukellal H; Selimović S; Jia Y; Cristobal G; Fraden S
    Lab Chip; 2009 Jan; 9(2):331-8. PubMed ID: 19107293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.