These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 19823750)

  • 1. Global analysis of the yeast osmotic stress response by quantitative proteomics.
    Soufi B; Kelstrup CD; Stoehr G; Fröhlich F; Walther TC; Olsen JV
    Mol Biosyst; 2009 Nov; 5(11):1337-46. PubMed ID: 19823750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress.
    Furukawa K; Hoshi Y; Maeda T; Nakajima T; Abe K
    Mol Microbiol; 2005 Jun; 56(5):1246-61. PubMed ID: 15882418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast expression proteomics by high-resolution mass spectrometry.
    Walther TC; Olsen JV; Mann M
    Methods Enzymol; 2010; 470():259-80. PubMed ID: 20946814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae.
    Blomberg A
    Electrophoresis; 1997 Aug; 18(8):1429-40. PubMed ID: 9298657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a genomic view of the gene expression program regulated by osmostress in yeast.
    Martínez-Montañés F; Pascual-Ahuir A; Proft M
    OMICS; 2010 Dec; 14(6):619-27. PubMed ID: 20726780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Analysis of the Hortaea werneckii proteome: studying steroid response in yeast.
    Matis M; Zakelj-Mavric M; Peter-Katalinić J
    J Proteome Res; 2005; 4(6):2043-51. PubMed ID: 16335949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
    de Godoy LM; Olsen JV; Cox J; Nielsen ML; Hubner NC; Fröhlich F; Walther TC; Mann M
    Nature; 2008 Oct; 455(7217):1251-4. PubMed ID: 18820680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring novel function of yeast Ssa1/2p by quantitative profiling proteomics using NanoESI-LC-MS/MS.
    Matsumoto R; Nam HW; Agrawal GK; Kim YS; Iwahashi H; Rakwal R
    J Proteome Res; 2007 Sep; 6(9):3465-74. PubMed ID: 17691831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome analysis of antibody-expressing CHO cells in response to hyperosmotic pressure.
    Lee MS; Kim KW; Kim YH; Lee GM
    Biotechnol Prog; 2003; 19(6):1734-41. PubMed ID: 14656149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae.
    Yang XX; Maurer KC; Molanus M; Mager WH; Siderius M; van der Vies SM
    FEMS Yeast Res; 2006 Mar; 6(2):195-204. PubMed ID: 16487343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H
    J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global analysis of protein phosphorylation in yeast.
    Ptacek J; Devgan G; Michaud G; Zhu H; Zhu X; Fasolo J; Guo H; Jona G; Breitkreutz A; Sopko R; McCartney RR; Schmidt MC; Rachidi N; Lee SJ; Mah AS; Meng L; Stark MJ; Stern DF; De Virgilio C; Tyers M; Andrews B; Gerstein M; Schweitzer B; Predki PF; Snyder M
    Nature; 2005 Dec; 438(7068):679-84. PubMed ID: 16319894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.
    Höper D; Bernhardt J; Hecker M
    Proteomics; 2006 Mar; 6(5):1550-62. PubMed ID: 16440371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation.
    Chourey K; Thompson MR; Shah M; Zhang B; Verberkmoes NC; Thompson DK; Hettich RL
    J Proteome Res; 2009 Jan; 8(1):59-71. PubMed ID: 19118451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics.
    Riedel K; Lehner A
    Proteomics; 2007 Apr; 7(8):1217-31. PubMed ID: 17380534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of Saccharomyces cerevisiae.
    Pham TK; Wright PC
    Expert Rev Proteomics; 2007 Dec; 4(6):793-813. PubMed ID: 18067417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold response in Saccharomyces cerevisiae: new functions for old mechanisms.
    Aguilera J; Randez-Gil F; Prieto JA
    FEMS Microbiol Rev; 2007 Apr; 31(3):327-41. PubMed ID: 17298585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom.
    Gao X; Jin C; Ren J; Yao X; Xue Y
    Genomics; 2008 Dec; 92(6):457-63. PubMed ID: 18817865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.