These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19824617)

  • 1. Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles.
    Burch D; Bazant MZ
    Nano Lett; 2009 Nov; 9(11):3795-800. PubMed ID: 19824617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics.
    Guo Y; Smith RB; Yu Z; Efetov DK; Wang J; Kim P; Bazant MZ; Brus LE
    J Phys Chem Lett; 2016 Jun; 7(11):2151-6. PubMed ID: 27203128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li(x)FePO4 Nanoparticles from Surface Wetting and Coherency Strain.
    Welland MJ; Karpeyev D; O'Connor DT; Heinonen O
    ACS Nano; 2015 Oct; 9(10):9757-71. PubMed ID: 26355590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles.
    Cogswell DA; Bazant MZ
    ACS Nano; 2012 Mar; 6(3):2215-25. PubMed ID: 22304943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programs for the calculation of the spinodal decomposition growth rate and the spinodal gap in nanoparticles.
    Pogorelov E; Kundin J
    Data Brief; 2017 Dec; 15():840-850. PubMed ID: 29159223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of metastable structures by phase separation triggered by initial composition gradients in thin films.
    Jaiswal PK; Binder K; Puri S
    J Chem Phys; 2012 Aug; 137(6):064704. PubMed ID: 22897299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation of binary mixtures in thin films: Effects of an initial concentration gradient across the film.
    Jaiswal PK; Binder K; Puri S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041602. PubMed ID: 22680483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acousto-spinodal decomposition of compressible polymer solutions: early stage analysis.
    Rasouli G; Rey AD
    J Chem Phys; 2011 May; 134(18):184901. PubMed ID: 21568529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.
    Bazant MZ
    Faraday Discuss; 2017 Jul; 199():423-463. PubMed ID: 28573280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition.
    Keßler S; Schmid F; Drese K
    Soft Matter; 2016 Sep; 12(34):7231-40. PubMed ID: 27502026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase separation of comb polymer nanocomposite melts.
    Xu Q; Feng Y; Chen L
    Soft Matter; 2016 Feb; 12(5):1385-400. PubMed ID: 26754414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge.
    Bai P; Cogswell DA; Bazant MZ
    Nano Lett; 2011 Nov; 11(11):4890-6. PubMed ID: 21985573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic solubility limits in nanosized olivine LiFePO4.
    Wagemaker M; Singh DP; Borghols WJ; Lafont U; Haverkate L; Peterson VK; Mulder FM
    J Am Chem Soc; 2011 Jul; 133(26):10222-8. PubMed ID: 21598941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinodal decomposition and domain coarsening in a multilayer Cahn-Hilliard model for lithium intercalation in graphite.
    Cordoba A; Chandesris M; Plapp M
    Phys Rev E; 2024 Feb; 109(2-1):024132. PubMed ID: 38491582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional bicontinuous structures from symmetric surface-directed spinodal decomposition in thin films.
    Wise MB; Millett PC
    Phys Rev E; 2018 Aug; 98(2-1):022601. PubMed ID: 30253514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase dynamics and wetting layer formation mechanisms in two-step surface-directed spinodal decomposition.
    Yan LT; Xie XM
    J Chem Phys; 2008 Apr; 128(15):154702. PubMed ID: 18433253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation near the spinodal: limitations of mean field density functional theory.
    Wilemski G; Li JS
    J Chem Phys; 2004 Oct; 121(16):7821-8. PubMed ID: 15485244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects.
    Xavier P; Rao P; Bose S
    Phys Chem Chem Phys; 2016 Jan; 18(1):47-64. PubMed ID: 26601893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Effects on Phase Separation.
    Palomares-Baez JP; Panizon E; Ferrando R
    Nano Lett; 2017 Sep; 17(9):5394-5401. PubMed ID: 28800237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.