These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19824669)

  • 1. Nanospheres of silica with an epsilon-Fe2O3 single crystal nucleus.
    Taboada E; Gich M; Roig A
    ACS Nano; 2009 Nov; 3(11):3377-82. PubMed ID: 19824669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Packing efficiency of small silica particles on large latex particles: a facile route to colloidal nanocomposites.
    Balmer JA; Armes SP; Fowler PW; Tarnai T; Gáspár Z; Murray KA; Williams NS
    Langmuir; 2009 May; 25(9):5339-47. PubMed ID: 19260684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct formation of thermally stabilized amorphous mesoporous Fe2O3/SiO2 nanocomposites by hydrolysis of aqueous iron III nitrate in sols of spherical silica particles.
    Khalil KM; Mahmoud HA; Ali TT
    Langmuir; 2008 Feb; 24(3):1037-43. PubMed ID: 18177061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient synthesis of poly(2-vinylpyridine)-silica colloidal nanocomposite particles using a cationic azo initiator.
    Dupin D; Schmid A; Balmer JA; Armes SP
    Langmuir; 2007 Nov; 23(23):11812-8. PubMed ID: 17924674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited carrier dynamics of alpha-Cr2O3/alpha-Fe2O3 core-shell nanostructures.
    Xiong G; Joly AG; Holtom GP; Wang C; McCready DE; Beck KM; Hess WP
    J Phys Chem B; 2006 Aug; 110(34):16937-40. PubMed ID: 16927984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEM-induced structural evolution in amorphous Fe oxide nanoparticles.
    Latham AH; Wilson MJ; Schiffer P; Williams ME
    J Am Chem Soc; 2006 Oct; 128(39):12632-3. PubMed ID: 17002341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient preparation of polystyrene/silica colloidal nanocomposite particles by emulsion polymerization using a glycerol-functionalized silica sol.
    Schmid A; Armes SP; Leite CA; Galembeck F
    Langmuir; 2009 Feb; 25(4):2486-94. PubMed ID: 19140699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polystyrene-silica nanocomposite particles via alcoholic dispersion polymerization using a cationic azo initiator.
    Schmid A; Fujii S; Armes SP
    Langmuir; 2006 May; 22(11):4923-7. PubMed ID: 16700576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural behavior of laser-irradiated γ-Fe
    El Mendili Y; Bardeau JF; Randrianantoandro N; Greneche JM; Grasset F
    Sci Technol Adv Mater; 2016; 17(1):597-609. PubMed ID: 27877906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the nanomorphology of polymer-silica colloidal nanocomposites using electron spectroscopy imaging.
    Amalvy JI; Percy MJ; Armes SP; Leite CA; Galembeck F
    Langmuir; 2005 Feb; 21(4):1175-9. PubMed ID: 15697257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cycling performance of an Fe0/Fe3O4 nanocomposite electrode for lithium-ion batteries.
    Lee GH; Park JG; Sung YM; Chung KY; Cho WI; Kim DW
    Nanotechnology; 2009 Jul; 20(29):295205. PubMed ID: 19567958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica-shell/oil-core microcapsules with controlled shell thickness and their breakage stress.
    O'Sullivan M; Zhang Z; Vincent B
    Langmuir; 2009 Jul; 25(14):7962-6. PubMed ID: 19402651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous α-Fe2O3 nanospheres: structural evolution and investigation of magnetic properties.
    Li G; Liu M; Kou HZ
    Chemistry; 2011 Apr; 17(15):4323-9. PubMed ID: 21387429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells.
    Lu Y; McLellan J; Xia Y
    Langmuir; 2004 Apr; 20(8):3464-70. PubMed ID: 15875883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of spherical colloidal crystals using electrospray.
    Hong SH; Moon JH; Lim JM; Kim SH; Yang SM
    Langmuir; 2005 Nov; 21(23):10416-21. PubMed ID: 16262301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stober method for imaging individual particles in dense colloidal suspensions.
    Lee MH; Beyer FL; Furst EM
    J Colloid Interface Sci; 2005 Aug; 288(1):114-23. PubMed ID: 15927569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.
    Nagao D; Yokoyama M; Yamauchi N; Matsumoto H; Kobayashi Y; Konno M
    Langmuir; 2008 Sep; 24(17):9804-8. PubMed ID: 18652421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.
    Khalil KM; Elsamahy AA; Elanany MS
    J Colloid Interface Sci; 2002 May; 249(2):359-65. PubMed ID: 16290609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.