BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19824708)

  • 1. Surface modification of yttria-stabilized zirconia electrolyte by atomic layer deposition.
    Chao CC; Kim YB; Prinz FB
    Nano Lett; 2009 Oct; 9(10):3626-8. PubMed ID: 19824708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.
    Ji S; Cho GY; Yu W; Su PC; Lee MH; Cha SW
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):2998-3002. PubMed ID: 25625537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells.
    Yu W; Cho GY; Hong S; Lee Y; Kim YB; An J; Cha SW
    Nanotechnology; 2016 Oct; 27(41):415402. PubMed ID: 27595193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-annealing of thin-film yttria stabilized zirconia electrolytes for anode-supported low-temperature solid oxide fuel cells.
    Bae J; Chang I; Kang S; Hong S; Cha SW; Kim YB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9294-9. PubMed ID: 25971054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition.
    Ji S; Chang I; Lee YH; Park J; Paek JY; Lee MH; Cha SW
    Nanoscale Res Lett; 2013 Jan; 8(1):48. PubMed ID: 23342963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia.
    Chao CC; Park JS; Tian X; Shim JH; Gür TM; Prinz FB
    ACS Nano; 2013 Mar; 7(3):2186-91. PubMed ID: 23397972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode.
    Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of yttria-stabilized zirconia nanotubes by atomic layer deposition toward efficient solid electrolytes.
    Kim E; Kim H; Bae C; Lee D; Moon J; Kim J; Shin H
    Nano Converg; 2017; 4(1):31. PubMed ID: 29238653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic structure and composition of the yttria-stabilized zirconia (111) surface.
    Vonk V; Khorshidi N; Stierle A; Dosch H
    Surf Sci; 2013 Jun; 612(100):69-76. PubMed ID: 23734067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual stress of free-standing membranes of yttria-stabilized zirconia for micro solid oxide fuel cell applications.
    Tarancón A; Sabaté N; Cavallaro A; Gràcia I; Roqueta J; Garbayo I; Esquivel JP; Garcia G; Cané C; Santiso J
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1327-37. PubMed ID: 20352795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support.
    Panthi D; Tsutsumi A
    Sci Rep; 2014 Aug; 4():5754. PubMed ID: 25169166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid oxide fuel cell with corrugated thin film electrolyte.
    Su PC; Chao CC; Shim JH; Fasching R; Prinz FB
    Nano Lett; 2008 Aug; 8(8):2289-92. PubMed ID: 18605702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers.
    Fan Z; Prinz FB
    Nano Lett; 2011 Jun; 11(6):2202-5. PubMed ID: 21563786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD).
    Oh EO; Whang CM; Lee YR; Park SY; Prasad DH; Yoon KJ; Son JW; Lee JH; Lee HW
    Adv Mater; 2012 Jul; 24(25):3373-7. PubMed ID: 22648864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells.
    Cho GY; Kim Y; Hong SW; Yu W; Kim YB; Cha SW
    Nanotechnology; 2018 Aug; 29(34):345401. PubMed ID: 29708505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia.
    Liu L; Zhou Z; Tian H; Li J
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26985895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.