These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 19824718)
1. An initial characterization of the serum phosphoproteome. Zhou W; Ross MM; Tessitore A; Ornstein D; Vanmeter A; Liotta LA; Petricoin EF J Proteome Res; 2009 Dec; 8(12):5523-31. PubMed ID: 19824718 [TBL] [Abstract][Full Text] [Related]
2. LC-MS/MS analysis of the dog serum phosphoproteome reveals novel and conserved phosphorylation sites: Phosphoprotein patterns in babesiosis caused by Babesia canis, a case study. Galán A; Horvatić A; Kuleš J; Bilić P; Gotić J; Mrljak V PLoS One; 2018; 13(11):e0207245. PubMed ID: 30485286 [TBL] [Abstract][Full Text] [Related]
3. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139 [TBL] [Abstract][Full Text] [Related]
4. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
5. Combining alkaline phosphatase treatment and hybrid linear ion trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for the efficient and confident identification of protein phosphorylation. Wu HY; Tseng VS; Chen LC; Chang YC; Ping P; Liao CC; Tsay YG; Yu JS; Liao PC Anal Chem; 2009 Sep; 81(18):7778-87. PubMed ID: 19702290 [TBL] [Abstract][Full Text] [Related]
6. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry. Kota U; Chien KY; Goshe MB Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030 [TBL] [Abstract][Full Text] [Related]
7. Novel Online Three-Dimensional Separation Expands the Detectable Functional Landscape of Cellular Phosphoproteome. Kang C; Huh S; Nam D; Kim H; Hong J; Hwang D; Lee SW Anal Chem; 2022 Sep; 94(35):12185-12195. PubMed ID: 35994246 [TBL] [Abstract][Full Text] [Related]
8. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification. Chen Y; Liang X Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049 [TBL] [Abstract][Full Text] [Related]
9. Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets. Alcolea MP; Kleiner O; Cutillas PR J Proteome Res; 2009 Aug; 8(8):3808-15. PubMed ID: 19537829 [TBL] [Abstract][Full Text] [Related]
10. High throughput profiling of serum phosphoproteins/peptides using the SELDI-TOF-MS platform. Ji L; Jayachandran G; Roth JA Methods Mol Biol; 2012; 818():199-216. PubMed ID: 22083825 [TBL] [Abstract][Full Text] [Related]
11. Rapid Shotgun Phosphoproteomics Analysis. Carrera M; Cañas B; Lopez-Ferrer D Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854 [TBL] [Abstract][Full Text] [Related]
13. Advances in the analysis of protein phosphorylation. Paradela A; Albar JP J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Wu L; Hu X; Wang S; Tian L; Pang Y; Han Z; Wu L; Chen Y Sci Rep; 2015 Dec; 5():18155. PubMed ID: 26659305 [TBL] [Abstract][Full Text] [Related]
15. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Nett IR; Martin DM; Miranda-Saavedra D; Lamont D; Barber JD; Mehlert A; Ferguson MA Mol Cell Proteomics; 2009 Jul; 8(7):1527-38. PubMed ID: 19346560 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Phosphoproteomic Analysis of Brain Tissues. Bai B; Tan H; Peng J Methods Mol Biol; 2017; 1598():199-211. PubMed ID: 28508362 [TBL] [Abstract][Full Text] [Related]
17. Mass spectrometry-based characterization of the vitreous phosphoproteome. Tamburro D; Facchiano F; Petricoin EF; Liotta LA; Zhou W Proteomics Clin Appl; 2010 Nov; 4(10-11):839-46. PubMed ID: 21137027 [TBL] [Abstract][Full Text] [Related]
18. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
19. Phosphoproteins with Stability Against All Urinary Phosphatases as Potential Biomarkers in Urine. Zhao M; Liu K; Gao Y Protein Pept Lett; 2015; 22(9):795-800. PubMed ID: 26112977 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Phosphorylated Proteins Using Mass Spectrometry. Yu LR; Veenstra TD Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]