These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19824727)

  • 1. Dip-pen lithography of ferroelectric PbTiO(3) nanodots.
    Son JY; Shin YH; Ryu S; Kim H; Jang HM
    J Am Chem Soc; 2009 Oct; 131(41):14676-8. PubMed ID: 19824727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films.
    Jia CL; Nagarajan V; He JQ; Houben L; Zhao T; Ramesh R; Urban K; Waser R
    Nat Mater; 2007 Jan; 6(1):64-9. PubMed ID: 17173031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography.
    Shin YS; Son JY; Jo MH; Shin YH; Jang HM
    J Am Chem Soc; 2011 Apr; 133(15):5623-5. PubMed ID: 21443183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area Co-silicide nanodot arrays produced by colloidal nanosphere lithography and thermal annealing.
    Cheng SL; Wong SL; Lu SW; Chen H
    Ultramicroscopy; 2008 Sep; 108(10):1200-4. PubMed ID: 18571855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position-controlled functional oxide lateral heterostructures consisting of artificially aligned (Fe,Zn)3O4 nanodots and BiFeO3 matrix.
    Sakamoto T; Okada K; Hattori AN; Kanki T; Tanaka H
    Nanotechnology; 2012 Aug; 23(33):335302. PubMed ID: 22863682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates.
    Kim Y; Han H; Kim Y; Lee W; Alexe M; Baik S; Kim JK
    Nano Lett; 2010 Jun; 10(6):2141-6. PubMed ID: 20438115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled preparation of inorganic nanostructures on substrates by dip-pen nanolithography.
    Li Y; Sun H; Chu H
    Chem Asian J; 2010 May; 5(5):980-90. PubMed ID: 20340155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conducting atomic force microscopy studies on domain wall currents of Bi
    Kim M; Son JY
    Microsc Res Tech; 2024 Jul; 87(7):1534-1540. PubMed ID: 38420741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dip-pen nanolithography of electrical contacts to single graphene flakes.
    Wang WM; Stander N; Stoltenberg RM; Goldhaber-Gordon D; Bao Z
    ACS Nano; 2010 Nov; 4(11):6409-16. PubMed ID: 20945878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature controlled dip-pen nanolithography.
    Sanedrin RG; Amro NA; Rendlen J; Nelson M
    Nanotechnology; 2010 Mar; 21(11):115302. PubMed ID: 20173229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-ink dip-pen nanolithography studies elucidate molecular transport.
    Hampton JR; Dameron AA; Weiss PS
    J Am Chem Soc; 2006 Feb; 128(5):1648-53. PubMed ID: 16448138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scanning force microscopy study on the motion of single brush-like macromolecules on a silicon substrate induced by coadsorption of small molecules.
    Gallyamov MO; Tartsch B; Mela P; Börner H; Matyjaszewski K; Sheiko S; Khokhlov A; Möller M
    Phys Chem Chem Phys; 2007 Jan; 9(3):346-52. PubMed ID: 17199150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopatterning of catalyst by Dip Pen nanolithography (DPN) for synthesis of carbon nanotubes (CNT).
    Kang SW; Banerjee D; Kaul AB; Megerian KG
    Scanning; 2010; 32(1):42-8. PubMed ID: 20496440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by dip pen nanolithography.
    Baserga A; Viganò M; Casari CS; Turri S; Li Bassi A; Levi M; Bottani CE
    Langmuir; 2008 Nov; 24(22):13212-7. PubMed ID: 18950214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth dynamics of self-assembled monolayers in dip-pen nanolithography.
    Ahn Y; Hong S; Jang J
    J Phys Chem B; 2006 Mar; 110(9):4270-3. PubMed ID: 16509723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dip Pen Nanolithography (DPN): process and instrument performance with NanoInk's NSCRIPTOR system.
    Haaheim J; Eby R; Nelson M; Fragala J; Rosner B; Zhang H; Athas G
    Ultramicroscopy; 2005 May; 103(2):117-32. PubMed ID: 15774273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography.
    Demers LM; Ginger DS; Park SJ; Li Z; Chung SW; Mirkin CA
    Science; 2002 Jun; 296(5574):1836-8. PubMed ID: 12052950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.
    Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR
    Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein nanostructures formed via direct-write dip-pen nanolithography.
    Lee KB; Lim JH; Mirkin CA
    J Am Chem Soc; 2003 May; 125(19):5588-9. PubMed ID: 12733870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale molecular transport: the case of dip-pen nanolithography.
    Giam LR; Wang Y; Mirkin CA
    J Phys Chem A; 2009 Apr; 113(16):3779-82. PubMed ID: 19209881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.