These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1982496)

  • 41. Synaptic organization of the cone horizontal cells in the catfish retina.
    Sakai HM; Naka K
    J Comp Neurol; 1986 Mar; 245(1):107-15. PubMed ID: 3958241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dark adaptation of horizontal cells in the teleost fish retina.
    Yang XL; Fan TX; Li JD
    Sci China B; 1991 May; 34(5):611-9. PubMed ID: 2059325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina.
    Xin D; Bloomfield SA
    Vis Neurosci; 1999; 16(4):653-65. PubMed ID: 10431914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Background and bleaching adaptation in luminosity type horizontal cells in the isolated turtle retina.
    Normann RA; Perlman I
    J Physiol; 1990 Feb; 421():321-41. PubMed ID: 2348395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The neuronal organization of the outer plexiform layer of the primate retina.
    Mariani AP
    Int Rev Cytol; 1984; 86():285-320. PubMed ID: 6368448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular recording from identified photoreceptors and horizontal cells of the Xenopus retina.
    Hassin G; Witkovsky P
    Vision Res; 1983; 23(10):921-31. PubMed ID: 6649438
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure determines function of the retina, a neural center. 4. The 'duplex' nature of vision.
    Sjöstrand FS
    J Submicrosc Cytol Pathol; 1998 Oct; 30(4):463-74. PubMed ID: 9851054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons.
    Frumkes TE; Wu SM
    J Neurophysiol; 1990 Sep; 64(3):1043-54. PubMed ID: 2230916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleoside triphosphates and hydrolysis-resistant analogues: effects on PIII responses in the isolated skate retina.
    Clack JW; Pepperberg DR
    Vision Res; 1984; 24(12):1859-64. PubMed ID: 6534008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peroxidase uptake by photoreceptor terminals of the skate retina.
    Ripps H; Shakib M; MacDonald ED
    J Cell Biol; 1976 Jul; 70(1):86-96. PubMed ID: 932103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light-dependent synaptic delay between photoreceptors and horizontal cells in the tiger salamander retina.
    Wu SM
    Vision Res; 1987; 27(3):363-7. PubMed ID: 2821691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of maintained light stimulation on S-potentials recorded from the retina of a teleost fish.
    Ruddock KH; Svaetichin G
    J Physiol; 1975 Jan; 244(3):569-88. PubMed ID: 1133771
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The ultrastructure of rat rod synaptic terminals: effects of dark-adaptation.
    Brandon C; Lam DM
    J Comp Neurol; 1983 Jun; 217(2):167-75. PubMed ID: 6886050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rod and cone signals in the horizontal cells of the tiger salamander retina.
    Hanani M; Vallerga S
    J Physiol; 1980 Jan; 298():397-405. PubMed ID: 7359420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The connectivity of cones and cone horizontal cells in a mosaic-type teleost retina.
    Wagner HJ
    Cell Tissue Res; 1976 Nov; 175(1):85-100. PubMed ID: 1000600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cone synapses with Golgi-stained bipolar cells that are morphologically similar to a center-hyperpolarizing and a center-depolarizing bipolar cell type in the turtle retina.
    Kolb H; Wang HH; Jones J
    J Comp Neurol; 1986 Aug; 250(4):510-20. PubMed ID: 2428846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excitatory amino acid receptors of rod- and cone-driven horizontal cells in the rabbit retina.
    Massey SC; Miller RF
    J Neurophysiol; 1987 Mar; 57(3):645-59. PubMed ID: 3031231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Light-dependent change of cone-horizontal cell interactions in carp retina.
    Weiler R; Wagner HJ
    Brain Res; 1984 Apr; 298(1):1-9. PubMed ID: 6326947
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dopaminergic control mechanisms of light adaptive processes in teleost retinal morphology.
    Wagner HJ
    Neurosci Res Suppl; 1991; 15():S131-43. PubMed ID: 1839172
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.