These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Rodriguez Estrada AE; Hegeman A; Kistler HC; May G Fungal Genet Biol; 2011 Sep; 48(9):874-85. PubMed ID: 21703356 [TBL] [Abstract][Full Text] [Related]
25. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
26. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271 [TBL] [Abstract][Full Text] [Related]
27. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
28. Correspondence between symptom development of Colletotrichum graminicola and fungal biomass, quantified by a newly developed qPCR assay, depends on the maize variety. Weihmann F; Eisermann I; Becher R; Krijger JJ; Hübner K; Deising HB; Wirsel SG BMC Microbiol; 2016 May; 16():94. PubMed ID: 27215339 [TBL] [Abstract][Full Text] [Related]
29. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Christensen SA; Nemchenko A; Park YS; Borrego E; Huang PC; Schmelz EA; Kunze S; Feussner I; Yalpani N; Meeley R; Kolomiets MV Mol Plant Microbe Interact; 2014 Nov; 27(11):1263-76. PubMed ID: 25122482 [TBL] [Abstract][Full Text] [Related]
30. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development. Vargas WA; Sanz-Martín JM; Rech GE; Armijos-Jaramillo VD; Rivera LP; Echeverria MM; Díaz-Mínguez JM; Thon MR; Sukno SA Mol Plant Microbe Interact; 2016 Feb; 29(2):83-95. PubMed ID: 26554735 [TBL] [Abstract][Full Text] [Related]
31. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Yang T; Stoopen G; Yalpani N; Vervoort J; de Vos R; Voster A; Verstappen FW; Bouwmeester HJ; Jongsma MA Metab Eng; 2011 Jul; 13(4):414-25. PubMed ID: 21296182 [TBL] [Abstract][Full Text] [Related]
32. Fungal Species Composition in Maize Stalks in Relation to European Corn Borer Injury and Transgenic Insect Protection. Gatch EW; Munkvold GP Plant Dis; 2002 Oct; 86(10):1156-1162. PubMed ID: 30818511 [TBL] [Abstract][Full Text] [Related]
33. Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. Gai X; Dong H; Wang S; Liu B; Zhang Z; Li X; Gao Z PLoS One; 2018; 13(7):e0201588. PubMed ID: 30063754 [TBL] [Abstract][Full Text] [Related]
34. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Behr M; Motyka V; Weihmann F; Malbeck J; Deising HB; Wirsel SG Mol Plant Microbe Interact; 2012 Aug; 25(8):1073-82. PubMed ID: 22746825 [TBL] [Abstract][Full Text] [Related]
35. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Gao X; Shim WB; Göbel C; Kunze S; Feussner I; Meeley R; Balint-Kurti P; Kolomiets M Mol Plant Microbe Interact; 2007 Aug; 20(8):922-33. PubMed ID: 17722696 [TBL] [Abstract][Full Text] [Related]
36. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
37. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. Martínez-Álvarez JC; Castro-Martínez C; Sánchez-Peña P; Gutiérrez-Dorado R; Maldonado-Mendoza IE World J Microbiol Biotechnol; 2016 May; 32(5):75. PubMed ID: 27038945 [TBL] [Abstract][Full Text] [Related]
38. Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola. Eisermann I; Weihmann F; Krijger JJ; Kröling C; Hause G; Menzel M; Pienkny S; Kiesow A; Deising HB; Wirsel SGR Environ Microbiol; 2019 Dec; 21(12):4773-4791. PubMed ID: 31599055 [TBL] [Abstract][Full Text] [Related]
39. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930 [TBL] [Abstract][Full Text] [Related]
40. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola. Buiate EAS; Xavier KV; Moore N; Torres MF; Farman ML; Schardl CL; Vaillancourt LJ BMC Genomics; 2017 Jan; 18(1):67. PubMed ID: 28073340 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]