These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 19825499)
1. Evaluation of a new polymeric stationary phase with reversed-phase properties for high temperature liquid chromatography. Vanhoenacker G; Dos Santos Pereira A; Kotsuka T; Cabooter D; Desmet G; Sandra P J Chromatogr A; 2010 May; 1217(19):3217-22. PubMed ID: 19825499 [TBL] [Abstract][Full Text] [Related]
2. Impact of methanol and acetonitrile on separations based on pi-pi interactions with a reversed-phase phenyl column. Yang M; Fazio S; Munch D; Drumm P J Chromatogr A; 2005 Dec; 1097(1-2):124-9. PubMed ID: 16298191 [TBL] [Abstract][Full Text] [Related]
4. A multiple-function stationary phase based on perhydro-26-membered hexaazamacrocycle for high-performance liquid chromatography. He L; Zhang J; Sun Y; Liu J; Jiang X; Qu L J Chromatogr A; 2010 Sep; 1217(38):5971-7. PubMed ID: 20719319 [TBL] [Abstract][Full Text] [Related]
5. New stationary phases for high-performance liquid chromatography based on poly(methyltetradecylsiloxane) thermally immobilized onto zirconized silica. Faria AM; Collins KE; Collins CH J Chromatogr A; 2006 Jul; 1122(1-2):114-22. PubMed ID: 16696991 [TBL] [Abstract][Full Text] [Related]
6. Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules. Nesterenko EP; Nesterenko PN; Connolly D; Lacroix F; Paull B J Chromatogr A; 2010 Apr; 1217(14):2138-46. PubMed ID: 20189186 [TBL] [Abstract][Full Text] [Related]
7. Kinetic performance of reversed-phase C18 high-performance liquid chromatography columns compared by means of the Kinetic Plot Method in pharmaceutically relevant applications. Fanigliulo A; Cabooter D; Bellazzi G; Allieri B; Rottigni A; Desmet G J Chromatogr A; 2011 May; 1218(21):3351-9. PubMed ID: 20863506 [TBL] [Abstract][Full Text] [Related]
8. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry. Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445 [TBL] [Abstract][Full Text] [Related]
9. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Rafferty JL; Siepmann JI; Schure MR J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the performance of commercially available polysaccharide-based chiral stationary phases after multicycle operation in multimodal elution mode. Török G; Goetelen L; Luyckx R; Van Broeck P J Pharm Biomed Anal; 2005 Sep; 39(3-4):425-30. PubMed ID: 15927435 [TBL] [Abstract][Full Text] [Related]
13. High-efficiency hydrophilic interaction chromatography by coupling 25 cm x 4.6mm ID x 5 microm silica columns and operation at 80 degrees C. Louw S; Lynen F; Hanna-Brown M; Sandra P J Chromatogr A; 2010 Jan; 1217(4):514-21. PubMed ID: 20015500 [TBL] [Abstract][Full Text] [Related]
14. The acetonitrile shortage: is reversed HILIC with water an alternative for the analysis of highly polar ionizable solutes? dos Santos Pereira A; David F; Vanhoenacker G; Sandra P J Sep Sci; 2009 Jun; 32(12):2001-7. PubMed ID: 19479755 [TBL] [Abstract][Full Text] [Related]
15. High throughput liquid chromatography with sub-2 microm particles at high pressure and high temperature. Nguyen DT; Guillarme D; Heinisch S; Barrioulet MP; Rocca JL; Rudaz S; Veuthey JL J Chromatogr A; 2007 Oct; 1167(1):76-84. PubMed ID: 17765255 [TBL] [Abstract][Full Text] [Related]
16. Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology. Barmpalexis P; Kanaze FI; Georgarakis E J Pharm Biomed Anal; 2009 Jul; 49(5):1192-202. PubMed ID: 19369025 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of ternary mobile phases for reversed-phase liquid chromatography: effect of composition on retention mechanism. Coym JW J Chromatogr A; 2010 Sep; 1217(38):5957-64. PubMed ID: 20723902 [TBL] [Abstract][Full Text] [Related]
18. Retention behaviors of natural products in reversed-phase liquid chromatography using mobile phase comprising methanol, acetonitrile and water. Qiao X; Ye M; Liang YH; Yang WZ; Guo DA J Sep Sci; 2011 Jan; 34(2):169-75. PubMed ID: 21246722 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of novel polar-embedded silica stationary phases for use in reversed-phase high-performance liquid chromatography. Wang H; Chen L; Tang X; Jia Y; Li G; Sun X; Wen A J Chromatogr A; 2013 Jan; 1271(1):153-62. PubMed ID: 23237708 [TBL] [Abstract][Full Text] [Related]
20. High-temperature liquid chromatography. Part II: Determination of the viscosities of binary solvent mixtures--implications for liquid chromatographic separations. Teutenberg T; Wiese S; Wagner P; Gmehling J J Chromatogr A; 2009 Nov; 1216(48):8470-9. PubMed ID: 19833341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]