These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
482 related articles for article (PubMed ID: 19825579)
1. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize. Xu JH; Messing J Mol Plant; 2008 Sep; 1(5):760-9. PubMed ID: 19825579 [TBL] [Abstract][Full Text] [Related]
2. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. Chen Y; Hao X; Cao J J Integr Plant Biol; 2014 Feb; 56(2):133-50. PubMed ID: 24472286 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. Zhang X; Zong J; Liu J; Yin J; Zhang D J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659 [TBL] [Abstract][Full Text] [Related]
4. Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Xu JH; Messing J Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14330-5. PubMed ID: 18794528 [TBL] [Abstract][Full Text] [Related]
5. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae. Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588 [TBL] [Abstract][Full Text] [Related]
6. The Hybaid Lecture. Microcollinearity and segmental duplication in the evolution of grass nuclear genomes. Bennetzen JL; SanMiguel P; Liu CN; Chen M; Tikhonov A; Costa de Oliveira A; Jin YK; Avramova Z; Woo SS; Zhang H; Wing RA Symp Soc Exp Biol; 1996; 50():1-3. PubMed ID: 9039427 [TBL] [Abstract][Full Text] [Related]
7. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Ilic K; SanMiguel PJ; Bennetzen JL Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12265-70. PubMed ID: 14530400 [TBL] [Abstract][Full Text] [Related]
8. New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Salse J; Piégu B; Cooke R; Delseny M Plant J; 2004 May; 38(3):396-409. PubMed ID: 15086801 [TBL] [Abstract][Full Text] [Related]
9. DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Ma J; SanMiguel P; Lai J; Messing J; Bennetzen JL Genetics; 2005 Jul; 170(3):1209-20. PubMed ID: 15834137 [TBL] [Abstract][Full Text] [Related]
10. Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Swigonová Z; Bennetzen JL; Messing J Genetics; 2005 Feb; 169(2):891-906. PubMed ID: 15489523 [TBL] [Abstract][Full Text] [Related]
11. Unique genes in plants: specificities and conserved features throughout evolution. Armisén D; Lecharny A; Aubourg S BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470 [TBL] [Abstract][Full Text] [Related]
12. Detailed analysis of a contiguous 22-Mb region of the maize genome. Wei F; Stein JC; Liang C; Zhang J; Fulton RS; Baucom RS; De Paoli E; Zhou S; Yang L; Han Y; Pasternak S; Narechania A; Zhang L; Yeh CT; Ying K; Nagel DH; Collura K; Kudrna D; Currie J; Lin J; Kim H; Angelova A; Scara G; Wissotski M; Golser W; Courtney L; Kruchowski S; Graves TA; Rock SM; Adams S; Fulton LA; Fronick C; Courtney W; Kramer M; Spiegel L; Nascimento L; Kalyanaraman A; Chaparro C; Deragon JM; Miguel PS; Jiang N; Wessler SR; Green PJ; Yu Y; Schwartz DC; Meyers BC; Bennetzen JL; Martienssen RA; McCombie WR; Aluru S; Clifton SW; Schnable PS; Ware D; Wilson RK; Wing RA PLoS Genet; 2009 Nov; 5(11):e1000728. PubMed ID: 19936048 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. Yan HB; Pan XX; Jiang HW; Wu GJ Theor Appl Genet; 2009 Sep; 119(5):815-25. PubMed ID: 19593540 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768 [TBL] [Abstract][Full Text] [Related]
15. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing. Morishige DT; Childs KL; Moore LD; Mullet JE Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045 [TBL] [Abstract][Full Text] [Related]
16. Ancient rapid functional differentiation and fixation of the duplicated members in rice Dof genes after whole genome duplication. Yu L; Ma S; Zhang X; Tian D; Yang S; Jia X; Traw MB Plant J; 2021 Dec; 108(5):1365-1381. PubMed ID: 34585814 [TBL] [Abstract][Full Text] [Related]
17. The Sorghum bicolor genome and the diversification of grasses. Paterson AH; Bowers JE; Bruggmann R; Dubchak I; Grimwood J; Gundlach H; Haberer G; Hellsten U; Mitros T; Poliakov A; Schmutz J; Spannagl M; Tang H; Wang X; Wicker T; Bharti AK; Chapman J; Feltus FA; Gowik U; Grigoriev IV; Lyons E; Maher CA; Martis M; Narechania A; Otillar RP; Penning BW; Salamov AA; Wang Y; Zhang L; Carpita NC; Freeling M; Gingle AR; Hash CT; Keller B; Klein P; Kresovich S; McCann MC; Ming R; Peterson DG; Mehboob-ur-Rahman ; Ware D; Westhoff P; Mayer KF; Messing J; Rokhsar DS Nature; 2009 Jan; 457(7229):551-6. PubMed ID: 19189423 [TBL] [Abstract][Full Text] [Related]
18. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. Rice Chromosomes 11 and 12 Sequencing Consortia BMC Biol; 2005 Sep; 3():20. PubMed ID: 16188032 [TBL] [Abstract][Full Text] [Related]