BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19825654)

  • 1. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.
    Song LI; Zhou XY; Li LI; Xue LJ; Yang XI; Xue HW
    Mol Plant; 2009 Jul; 2(4):755-772. PubMed ID: 19825654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling.
    Nakamura A; Higuchi K; Goda H; Fujiwara MT; Sawa S; Koshiba T; Shimada Y; Yoshida S
    Plant Physiol; 2003 Dec; 133(4):1843-53. PubMed ID: 14605219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity.
    Laxmi A; Paul LK; Peters JL; Khurana JP
    Plant Mol Biol; 2004 Sep; 56(2):185-201. PubMed ID: 15604737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis.
    Li L; Xu J; Xu ZH; Xue HW
    Plant Cell; 2005 Oct; 17(10):2738-53. PubMed ID: 16141452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brassinosteroid selectively regulates PIN gene expression in Arabidopsis.
    Nakamura A; Goda H; Shimada Y; Yoshida S
    Biosci Biotechnol Biochem; 2004 Apr; 68(4):952-4. PubMed ID: 15118332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brassinosteroid-regulated gene expression.
    Müssig C; Fischer S; Altmann T
    Plant Physiol; 2002 Jul; 129(3):1241-51. PubMed ID: 12114578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis.
    Peng H; Zhao J; Neff MM
    Development; 2015 Dec; 142(23):4129-38. PubMed ID: 26493403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.
    Schneider K; Breuer C; Kawamura A; Jikumaru Y; Hanada A; Fujioka S; Ichikawa T; Kondou Y; Matsui M; Kamiya Y; Yamaguchi S; Sugimoto K
    PLoS One; 2012; 7(10):e46805. PubMed ID: 23071642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development.
    Kim H; Park PJ; Hwang HJ; Lee SY; Oh MH; Kim SG
    Biosci Biotechnol Biochem; 2006 Apr; 70(4):768-73. PubMed ID: 16636440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis.
    Shimada Y; Goda H; Nakamura A; Takatsuto S; Fujioka S; Yoshida S
    Plant Physiol; 2003 Jan; 131(1):287-97. PubMed ID: 12529536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice.
    Tanaka A; Nakagawa H; Tomita C; Shimatani Z; Ohtake M; Nomura T; Jiang CJ; Dubouzet JG; Kikuchi S; Sekimoto H; Yokota T; Asami T; Kamakura T; Mori M
    Plant Physiol; 2009 Oct; 151(2):669-80. PubMed ID: 19648232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of constitutive differential growth 1 gene, which encodes a RLCKVII-subfamily protein kinase, causes abnormal differential and elongation growth after organ differentiation in Arabidopsis.
    Muto H; Yabe N; Asami T; Hasunuma K; Yamamoto KT
    Plant Physiol; 2004 Oct; 136(2):3124-33. PubMed ID: 15466232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis.
    Goda H; Shimada Y; Asami T; Fujioka S; Yoshida S
    Plant Physiol; 2002 Nov; 130(3):1319-34. PubMed ID: 12427998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of synthetic ecdysteroid analogues as functional mimics of brassinosteroids in plant growth.
    Thussagunpanit J; Jutamanee K; Homvisasevongsa S; Suksamrarn A; Yamagami A; Nakano T; Asami T
    J Steroid Biochem Mol Biol; 2017 Sep; 172():1-8. PubMed ID: 28479230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis.
    Goda H; Sawa S; Asami T; Fujioka S; Shimada Y; Yoshida S
    Plant Physiol; 2004 Apr; 134(4):1555-73. PubMed ID: 15047898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation.
    Shi QM; Yang X; Song L; Xue HW
    Mol Plant; 2011 Nov; 4(6):1092-104. PubMed ID: 21715650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice.
    Yang G; Nakamura H; Ichikawa H; Kitano H; Komatsu S
    Phytochemistry; 2006 Jul; 67(14):1442-54. PubMed ID: 16808934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Interactions between Glucose and Brassinosteroid Signal Transduction Pathways in Arabidopsis Are Uncovered by Whole-Genome Transcriptional Profiling.
    Gupta A; Singh M; Laxmi A
    Plant Physiol; 2015 Jul; 168(3):1091-105. PubMed ID: 26034265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways.
    Fan XY; Sun Y; Cao DM; Bai MY; Luo XM; Yang HJ; Wei CQ; Zhu SW; Sun Y; Chong K; Wang ZY
    Mol Plant; 2012 May; 5(3):591-600. PubMed ID: 22535582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.
    Wimalasekera R; Pejchar P; Holk A; Martinec J; Scherer GF
    Mol Plant; 2010 May; 3(3):610-25. PubMed ID: 20507939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.